AAAI 2025
- Install
torch==2.1.0
. - Install pip packages via
pip install -r requirements.txt
and alpha_clip. - Our model is based on Stable Diffusion, download and put it into
datasets/pretrain
. Put the checkpoints of alpha_clip intodatasets/pretrain/alpha-clip
.
Please download the following datasets: COCO 2014, DAVIS16, VSPW, and PASCAL, which includes PASCAL VOC 2012 and SBD. And then download the meta files. Put them under datasets
and rearrange as follows.
datasets
├── pascal
│ ├── JPEGImages
│ ├── SegmentationClassAug
│ └── metas
├── davis16
│ ├── JPEGImages
│ ├── Annotations
│ └── metas
├── vspw
│ ├── images
│ ├── masks
│ └── metas
└── coco20i
├── annotations
│ ├── train2014
│ └── val2014
├── metas
├── train2014
└── val2014
The codes in scripts is launched by accelerate. The saved path is specified by --output_dir
defined in args.
# ldis1
accelerate launch --multi_gpu --num_processes [GPUS] scripts/modelf.py --config configs/cfg.py
# ldisn
accelerate launch --multi_gpu --num_processes [GPUS] scripts/modeln.py --config configs/cfg.py --mask_alpha 0.4
# ldis1
accelerate launch --multi_gpu --num_processes [GPUS] scripts/modelf.py --config configs/cfg.py --only_val 1 --val_dataset pascal --output_dir [the path of ckpt]
# ldisn
accelerate launch --multi_gpu --num_processes [GPUS] scripts/modeln.py --config configs/cfg.py --only_val 1 --val_dataset pascal --output_dir [the path of ckpt] --mask_alpha 0.4
The pretrained models can be found here.
If you find our work useful, please kindly consider citing our paper:
@article{wang2024explore,
title={Explore In-Context Segmentation via Latent Diffusion Models},
author={Wang, Chaoyang and Li, Xiangtai and Ding, Henghui and Qi, Lu and Zhang, Jiangning and Tong, Yunhai and Loy, Chen Change and Yan, Shuicheng},
journal={arXiv preprint arXiv:2403.09616},
year={2024}
}
MIT license