-
-
Notifications
You must be signed in to change notification settings - Fork 11.4k
[Model][VLM] Add LLaVA-Onevision model support #8486
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 1 commit
Commits
Show all changes
20 commits
Select commit
Hold shift + click to select a range
7b12c7f
add llava-onevision
159efb4
format: yapf and ruff
95f2dd0
update model notes
9256f17
format codes
4faa3af
add note for LLaVA-Onevision
litianjian 705ea74
remove the tracing codes
a76aaee
Merge branch 'llava-one-vision' of https://github.com/litianjian/vllm…
ac3686a
Merge remote-tracking branch 'upstream/main' into llava-one-vision
ywang96 e8c820e
update example
ywang96 4f001dc
updateunpadded_image_feature_size function in llava_onevision
92c827f
update
ywang96 c511c73
Merge remote-tracking branch 'upstream/main' into llava-one-vision
ywang96 b8e5416
Merge remote-tracking branch 'upstream/main' into llava-one-vision
ywang96 f016735
Merge branch 'main' into llava-one-vision
DarkLight1337 c3adcd6
Fix registry test
DarkLight1337 9eaaea6
Apply #8656
DarkLight1337 2c8bad3
Fix dtype conversion error in LLaVA-OneVision test
DarkLight1337 23af922
Fix type annotation
DarkLight1337 8f8daa1
Don't remove the first token
DarkLight1337 f5cdd45
format
DarkLight1337 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
229 changes: 229 additions & 0 deletions
229
tests/models/decoder_only/vision_language/test_llava_onevision.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,229 @@ | ||
| from typing import List, Optional, Tuple, Type, overload | ||
|
|
||
| import pytest | ||
| import transformers | ||
| from transformers import AutoConfig, AutoModelForVision2Seq, AutoTokenizer | ||
|
|
||
| from vllm.multimodal.utils import (rescale_video_size, resize_video, | ||
| sample_frames_from_video) | ||
| from vllm.sequence import SampleLogprobs | ||
|
|
||
| from ....conftest import VIDEO_ASSETS, HfRunner, VllmRunner, _VideoAssets | ||
| from ...utils import check_logprobs_close | ||
|
|
||
| HF_VIDEO_PROMPTS = VIDEO_ASSETS.prompts({ | ||
| "sample_demo_1": | ||
| "<|im_start|>user <video>\nwhy is this video funny?<|im_end|><|im_start|>assistant\n" | ||
| }) | ||
|
|
||
| models = ["llava-hf/llava-onevision-qwen2-7b-ov-hf"] | ||
|
|
||
|
|
||
| def vllm_to_hf_output(vllm_output: Tuple[List[int], str, | ||
| Optional[SampleLogprobs]], | ||
| model: str): | ||
| """Sanitize vllm output to be comparable with hf output.""" | ||
| output_ids, output_str, out_logprobs = vllm_output | ||
|
|
||
| config = AutoConfig.from_pretrained(model) | ||
| video_token_id = config.video_token_index | ||
|
|
||
| tokenizer = AutoTokenizer.from_pretrained(model) | ||
| eos_token_id = tokenizer.eos_token_id | ||
|
|
||
| hf_output_ids = [ | ||
| token_id for idx, token_id in enumerate(output_ids) | ||
| if token_id != video_token_id or output_ids[idx - 1] != video_token_id | ||
| ] | ||
|
|
||
| assert output_str[0] == " " | ||
| hf_output_str = output_str[1:] | ||
| if hf_output_ids[-1] == eos_token_id: | ||
| hf_output_str = hf_output_str + tokenizer.decode(eos_token_id) | ||
|
|
||
| return hf_output_ids, hf_output_str, out_logprobs | ||
|
|
||
|
|
||
| @overload | ||
| def run_test( | ||
| hf_runner: Type[HfRunner], | ||
| vllm_runner: Type[VllmRunner], | ||
| video_assets: _VideoAssets, | ||
| model: str, | ||
| *, | ||
| size_factors: List[float], | ||
| dtype: str, | ||
| max_tokens: int, | ||
| num_logprobs: int, | ||
| num_frames: int, | ||
| tensor_parallel_size: int, | ||
| distributed_executor_backend: Optional[str] = None, | ||
| ): | ||
| ... | ||
|
|
||
|
|
||
| @overload | ||
| def run_test( | ||
| hf_runner: Type[HfRunner], | ||
| vllm_runner: Type[VllmRunner], | ||
| video_assets: _VideoAssets, | ||
| model: str, | ||
| *, | ||
| sizes: List[Tuple[int, int]], | ||
| dtype: str, | ||
| max_tokens: int, | ||
| num_logprobs: int, | ||
| num_frames: int, | ||
| tensor_parallel_size: int, | ||
| distributed_executor_backend: Optional[str] = None, | ||
| ): | ||
| ... | ||
|
|
||
|
|
||
| def run_test( | ||
| hf_runner: Type[HfRunner], | ||
| vllm_runner: Type[VllmRunner], | ||
| video_assets: _VideoAssets, | ||
| model: str, | ||
| *, | ||
| size_factors: Optional[List[float]] = None, | ||
| sizes: Optional[List[Tuple[int, int]]] = None, | ||
| dtype: str, | ||
| max_tokens: int, | ||
| num_logprobs: int, | ||
| num_frames: int, | ||
| tensor_parallel_size: int, | ||
| distributed_executor_backend: Optional[str] = None, | ||
| ): | ||
| videos = [ | ||
| sample_frames_from_video(asset.np_ndarrays, num_frames) | ||
| for asset in video_assets | ||
| ] | ||
|
|
||
| for video in videos: | ||
| print(video.shape) | ||
|
|
||
| if size_factors is not None: | ||
| inputs_per_video = [( | ||
| [prompt for _ in size_factors], | ||
| [rescale_video_size(video, factor) for factor in size_factors], | ||
| ) for video, prompt in zip(videos, HF_VIDEO_PROMPTS)] | ||
| elif sizes is not None: | ||
| inputs_per_video = [( | ||
| [prompt for _ in sizes], | ||
| [resize_video(video, size) for size in sizes], | ||
| ) for video, prompt in zip(videos, HF_VIDEO_PROMPTS)] | ||
| else: | ||
| raise ValueError("You must provide either `size_factors` or `sizes`") | ||
|
|
||
| # max_model_len should be greater than image_feature_size | ||
| with vllm_runner(model, | ||
| dtype=dtype, | ||
| max_model_len=4096, | ||
| tensor_parallel_size=tensor_parallel_size, | ||
| distributed_executor_backend=distributed_executor_backend, | ||
| enforce_eager=True) as vllm_model: | ||
| vllm_outputs_per_video = [ | ||
| vllm_model.generate_greedy_logprobs(prompts, | ||
| max_tokens, | ||
| num_logprobs=num_logprobs, | ||
| videos=videos) | ||
| for prompts, videos in inputs_per_video | ||
| ] | ||
|
|
||
| with hf_runner(model, dtype=dtype, | ||
| auto_cls=AutoModelForVision2Seq) as hf_model: | ||
| hf_outputs_per_video = [ | ||
| hf_model.generate_greedy_logprobs_limit(prompts, | ||
| max_tokens, | ||
| num_logprobs=num_logprobs, | ||
| videos=videos) | ||
| for prompts, videos in inputs_per_video | ||
| ] | ||
|
|
||
| for hf_outputs, vllm_outputs in zip(hf_outputs_per_video, | ||
| vllm_outputs_per_video): | ||
| # TODO: Check whether using original CLIPVisionModel can improve | ||
| # consistency against HF | ||
| check_logprobs_close( | ||
| outputs_0_lst=hf_outputs, | ||
| outputs_1_lst=[ | ||
| vllm_to_hf_output(vllm_output, model) | ||
| for vllm_output in vllm_outputs | ||
| ], | ||
| name_0="hf", | ||
| name_1="vllm", | ||
| ) | ||
|
|
||
|
|
||
| @pytest.mark.skipif(transformers.__version__ < "4.45", | ||
| reason="Waiting for next transformers release") | ||
| @pytest.mark.parametrize("model", models) | ||
| @pytest.mark.parametrize( | ||
| "size_factors", | ||
| [ | ||
| # No video | ||
| [], | ||
| # Single-scale | ||
| [1.0], | ||
| # Single-scale, batched | ||
| [1.0, 1.0, 1.0], | ||
| # Multi-scale | ||
| [0.25, 0.5, 1.0], | ||
| ], | ||
| ) | ||
| @pytest.mark.parametrize("dtype", ["half"]) | ||
| @pytest.mark.parametrize("max_tokens", [128]) | ||
| @pytest.mark.parametrize("num_logprobs", [5]) | ||
| @pytest.mark.parametrize("num_frames", [16]) | ||
| def test_models(hf_runner, vllm_runner, video_assets, model, size_factors, | ||
| dtype, max_tokens, num_logprobs, num_frames) -> None: | ||
| """Inference result should be the same between hf and vllm. | ||
|
|
||
| All the image fixtures for the test is under tests/videos. | ||
| For huggingface runner, we provide the np.ndarray as input. | ||
| For vllm runner, we provide MultiModalDataDict objects | ||
| and corresponding MultiModalConfig as input. | ||
| Note, the text input is also adjusted to abide by vllm contract. | ||
| The text output is sanitized to be able to compare with hf. | ||
| """ | ||
| run_test( | ||
| hf_runner, | ||
| vllm_runner, | ||
| video_assets, | ||
| model, | ||
| size_factors=size_factors, | ||
| dtype=dtype, | ||
| max_tokens=max_tokens, | ||
| num_logprobs=num_logprobs, | ||
| num_frames=num_frames, | ||
| tensor_parallel_size=1, | ||
| ) | ||
|
|
||
|
|
||
| @pytest.mark.skipif(transformers.__version__ < "4.45", | ||
| reason="Waiting for next transformers release") | ||
| @pytest.mark.parametrize("model", models) | ||
| @pytest.mark.parametrize( | ||
| "sizes", | ||
| [[(1669, 2560), (2560, 1669), (183, 488), (488, 183)]], | ||
| ) | ||
| @pytest.mark.parametrize("dtype", ["half"]) | ||
| @pytest.mark.parametrize("max_tokens", [128]) | ||
| @pytest.mark.parametrize("num_logprobs", [5]) | ||
| @pytest.mark.parametrize("num_frames", [16]) | ||
| def test_models_fixed_sizes(hf_runner, vllm_runner, video_assets, model, sizes, | ||
| dtype, max_tokens, num_logprobs, | ||
| num_frames) -> None: | ||
| run_test( | ||
| hf_runner, | ||
| vllm_runner, | ||
| video_assets, | ||
| model, | ||
| sizes=sizes, | ||
| dtype=dtype, | ||
| max_tokens=max_tokens, | ||
| num_logprobs=num_logprobs, | ||
| num_frames=num_frames, | ||
| tensor_parallel_size=1, | ||
| ) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.