Skip to content

[Bug]: Qwen3-Reranker-8B failed to rerank on vllm 0.11.1rc4 #27857

@zhcn000000

Description

@zhcn000000

Your current environment

The output of python collect_env.py
Collecting environment information...
uv is set
==============================
        System Info
==============================
OS                           : Ubuntu 24.04.3 LTS (x86_64)
GCC version                  : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version                : Could not collect
CMake version                : version 3.28.3
Libc version                 : glibc-2.39

==============================
       PyTorch Info
==============================
PyTorch version              : 2.9.0+cu130
Is debug build               : False
CUDA used to build PyTorch   : 13.0
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.13.9 (main, Oct 28 2025, 12:10:42) [Clang 20.1.4 ] (64-bit runtime)
Python platform              : Linux-6.14.0-36-generic-x86_64-with-glibc2.39

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : Could not collect
CUDA_MODULE_LOADING set to   : 
GPU models and configuration : 
GPU 0: NVIDIA GeForce RTX 4090
GPU 1: NVIDIA GeForce RTX 4090
GPU 2: NVIDIA GeForce RTX 4090
GPU 3: NVIDIA GeForce RTX 4090
GPU 4: NVIDIA GeForce RTX 4090
GPU 5: NVIDIA GeForce RTX 4090
GPU 6: NVIDIA GeForce RTX 4090
GPU 7: NVIDIA GeForce RTX 4090

Nvidia driver version        : 580.95.05
cuDNN version                : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.14.0
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                            x86_64
CPU op-mode(s):                          32-bit, 64-bit
Address sizes:                           43 bits physical, 48 bits virtual
Byte Order:                              Little Endian
CPU(s):                                  128
On-line CPU(s) list:                     0-127
Vendor ID:                               AuthenticAMD
Model name:                              AMD EPYC 7542 32-Core Processor
CPU family:                              23
Model:                                   49
Thread(s) per core:                      2
Core(s) per socket:                      32
Socket(s):                               2
Stepping:                                0
Frequency boost:                         enabled
CPU(s) scaling MHz:                      49%
CPU max MHz:                             3408.1079
CPU min MHz:                             1500.0000
BogoMIPS:                                5789.09
Flags:                                   fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es
Virtualization:                          AMD-V
L1d cache:                               2 MiB (64 instances)
L1i cache:                               2 MiB (64 instances)
L2 cache:                                32 MiB (64 instances)
L3 cache:                                256 MiB (16 instances)
NUMA node(s):                            2
NUMA node0 CPU(s):                       0-31,64-95
NUMA node1 CPU(s):                       32-63,96-127
Vulnerability Gather data sampling:      Not affected
Vulnerability Ghostwrite:                Not affected
Vulnerability Indirect target selection: Not affected
Vulnerability Itlb multihit:             Not affected
Vulnerability L1tf:                      Not affected
Vulnerability Mds:                       Not affected
Vulnerability Meltdown:                  Not affected
Vulnerability Mmio stale data:           Not affected
Vulnerability Reg file data sampling:    Not affected
Vulnerability Retbleed:                  Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow:      Mitigation; Safe RET
Vulnerability Spec store bypass:         Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:                Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:                Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                     Not affected
Vulnerability Tsa:                       Not affected
Vulnerability Tsx async abort:           Not affected
Vulnerability Vmscape:                   Mitigation; IBPB before exit to userspace

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.4.1
[pip3] numpy==2.2.6
[pip3] nvidia-cublas==13.0.0.19
[pip3] nvidia-cuda-cupti==13.0.48
[pip3] nvidia-cuda-nvrtc==13.0.48
[pip3] nvidia-cuda-runtime==13.0.48
[pip3] nvidia-cudnn-cu13==9.13.0.50
[pip3] nvidia-cudnn-frontend==1.15.0
[pip3] nvidia-cufft==12.0.0.15
[pip3] nvidia-cufile==1.15.0.42
[pip3] nvidia-curand==10.4.0.35
[pip3] nvidia-cusolver==12.0.3.29
[pip3] nvidia-cusparse==12.6.2.49
[pip3] nvidia-cusparselt-cu13==0.8.0
[pip3] nvidia-cutlass-dsl==4.3.0.dev0
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu13==2.27.7
[pip3] nvidia-nvjitlink==13.0.39
[pip3] nvidia-nvshmem-cu13==3.3.24
[pip3] nvidia-nvtx==13.0.39
[pip3] pyzmq==27.1.0
[pip3] torch==2.9.0+cu130
[pip3] torchaudio==2.9.0+cu130
[pip3] torchvision==0.24.0+cu130
[pip3] transformers==4.57.1
[pip3] triton==3.5.0
[pip3] triton-kernels==3.5.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.11.1rc5.dev0+gf25754470.d20251030 (git sha: f25754470, date: 20251030)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
  	�[4mGPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	CPU Affinity	NUMA Affinity	GPU NUMA ID�[0m
GPU0	 X 	NODE	NODE	NODE	SYS	SYS	SYS	SYS	SYS	0-31,64-95	0		N/A
GPU1	NODE	 X 	NODE	NODE	SYS	SYS	SYS	SYS	SYS	0-31,64-95	0		N/A
GPU2	NODE	NODE	 X 	NODE	SYS	SYS	SYS	SYS	SYS	0-31,64-95	0		N/A
GPU3	NODE	NODE	NODE	 X 	SYS	SYS	SYS	SYS	SYS	0-31,64-95	0		N/A
GPU4	SYS	SYS	SYS	SYS	 X 	NODE	NODE	NODE	NODE	32-63,96-127	1		N/A
GPU5	SYS	SYS	SYS	SYS	NODE	 X 	NODE	NODE	NODE	32-63,96-127	1		N/A
GPU6	SYS	SYS	SYS	SYS	NODE	NODE	 X 	NODE	PHB	32-63,96-127	1		N/A
GPU7	SYS	SYS	SYS	SYS	NODE	NODE	NODE	 X 	NODE	32-63,96-127	1		N/A
NIC0	SYS	SYS	SYS	SYS	NODE	NODE	PHB	NODE	 X 				

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_bond_0

==============================
     Environment Variables
==============================
VLLM_HOST_IP=10.88.88.13
VLLM_USE_V1=1
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1

🐛 Describe the bug

CUDA_VISIBLE_DEVICES=0,1,2,3 vllm serve Qwen/Qwen3-Reranker-8B --host 0.0.0.0 --port 10000  --tensor-parallel-size 4 --hf_overrides '{"architectures": ["Qwen3ForSequenceClassification"],"classifier_from_token": ["no", "yes"], "is_original_qwen3_reranker": true}'

with curl

-H "Authorization: Bearer sk-" \
-H "Content-Type: application/json" \
-d '{
  "model": "Qwen/Qwen3-Reranker-8B",
  "query": "中国首都在哪",
  "documents": [
    "北京",
    "西京",
    "南京",
    "东京","面筋"
  ],"return_documents":true
}'
{"id":"rerank-18dc216f35d64d458b54fe03d40549d3","model":"Qwen/Qwen3-Reranker-8B","usage":{"total_tokens":27},"results":[{"index":0,"document":{"text":"北京","multi_modal":null},"relevance_score":0.5},{"index":1,"document":{"text":"西京","multi_modal":null},"relevance_score":0.5},{"index":2,"document":{"text":"南京","multi_modal":null},"relevance_score":0.5},{"index":3,"document":{"text":"东京","multi_modal":null},"relevance_score":0.5},{"index":4,"document":{"text":"面筋","multi_modal":null},"relevance_score":0.5}]}#

Using the template will also yield the same result of 0.5
Even without using a template, it shouldn't be all 0.5
It works fine in 0.11.0, but this problem occurs in 0.11.1rc3 and 0.11.1rc4 and 0.11.1rc5
Not use hf_overrides:

CUDA_VISIBLE_DEVICES=0,1,2,3 vllm serve Qwen/Qwen3-Reranker-8B --host 0.0.0.0 --port 10000  --tensor-parallel-size 4 --task score 

with curl

-H "Authorization: Bearer sk-" \
-H "Content-Type: application/json" \
-d '{
  "model": "Qwen/Qwen3-Reranker-8B",
  "query": "中国首都在哪",
  "documents": [
    "北京",
    "西京",
    "南京",
    "东京","面筋"
  ],"return_documents":true
}'
{"id":"rerank-b3c17e2f440b473193761696ed9d0902","model":"Qwen/Qwen3-Reranker-8B","usage":{"total_tokens":32},"results":[{"index":4,"document":{"text":"面筋","multi_modal":null},"relevance_score":0.8528335094451904},{"index":3,"document":{"text":"东京","multi_modal":null},"relevance_score":0.8199970126152039},{"index":2,"document":{"text":"南京","multi_modal":null},"relevance_score":0.8143513202667236},{"index":0,"document":{"text":"北京","multi_modal":null},"relevance_score":0.8059771060943604},{"index":1,"document":{"text":"西京","multi_modal":null},"relevance_score":0.48023074865341187}]}#

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

Labels

bugSomething isn't working

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions