Skip to content

varunvilva/ModelProjects

Repository files navigation

MISAHUB Challenge

Installation

First two cells in the ipynb file are for downloading the dataset.

How Yolov5 is run:

  1. Installation of Yolov5
!git clone https://github.com/ultralytics/yolov5  # clone
%cd yolov5
!pip install -r requirements.txt  # install
  1. Create a data.yaml file in the yolov5 directory:
!touch data.yaml

paste the data_yolo.yaml provided in the data.yaml created.

  1. Come out of the yolov5 directory:
%cd ..
  1. move the train, val and test set generated from the bleeding data provided.
!mv train_data yolov5
!mv val_data yolov5
!mv test_dir yolov5
  1. To train the yolo model:
%cd /content/yolov5
!python train.py --epochs 50 --data data.yaml --weights ../yolov5s.pt --cache
  1. to detect values on the test dataset:
!python detect.py --source test_dir/images --weights /content/yolov5/runs/train/exp4/weights/best.pt --save-txt

the path after the weights argument is the path to the pt file generated after training.

About

Contains Colab notebooks of projects on Computer Vision and GAN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published