2023-04-22 简化
2023-10-22 initial
- pip install -U -r requirements.txt
- 如果无法安装, 可以切换官方源 pip install -i https://pypi.org/simple -U -r requirements.txt
支持且不限于以下权重
open_data https://github.com/ssbuild/open_data
单条数据示例
p prefix optional
text must
img must
{"id": 1, "p": "", "text": "图中是一只拉布拉多犬", "img": "../assets/demo.jpeg"}# infer_finetuning.py 推理微调模型
# infer_lora_finetuning.py 推理微调模型
# infer_ptuning.py 推理p-tuning-v2微调模型
python infer_finetuning.py
# 制作数据
cd scripts
bash train_full.sh -m dataset
or
bash train_lora.sh -m dataset
or
bash train_ptv2.sh -m dataset
注: num_process_worker 为多进程制作数据 , 如果数据量较大 , 适当调大至cpu数量
dataHelper.make_dataset_with_args(data_args.train_file,mixed_data=False, shuffle=True,mode='train',num_process_worker=0)
# 全参数训练
bash train_full.sh
# lora adalora ia3
bash train_lora.sh
# ptv2
bash train_ptv2.sh
- pytorch-task-example
- tf-task-example
- chatmoss_finetuning
- chatglm_finetuning
- t5_finetuning
- llm_finetuning
- llm_rlhf
- chatglm_rlhf
- t5_rlhf
- rwkv_finetuning
- baichuan_finetuning
纯粹而干净的代码