Skip to content

腾讯&字节&阿里:介绍一下快排原理以及时间复杂度,并实现一个快排 #70

@sisterAn

Description

@sisterAn

快排使用了分治策略的思想,所谓分治,顾名思义,就是分而治之,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为子问题解的合并。

快排的过程简单的说只有三步:

  • 首先从序列中选取一个数作为基准数
  • 将比这个数大的数全部放到它的右边,把小于或者等于它的数全部放到它的左边 (一次快排 partition
  • 然后分别对基准的左右两边重复以上的操作,直到数组完全排序

具体按以下步骤实现:

  • 1,创建两个指针分别指向数组的最左端以及最右端
  • 2,在数组中任意取出一个元素作为基准
  • 3,左指针开始向右移动,遇到比基准大的停止
  • 4,右指针开始向左移动,遇到比基准小的元素停止,交换左右指针所指向的元素
  • 5,重复3,4,直到左指针超过右指针,此时,比基准小的值就都会放在基准的左边,比基准大的值会出现在基准的右边
  • 6,然后分别对基准的左右两边重复以上的操作,直到数组完全排序

注意这里的基准该如何选择喃?最简单的一种做法是每次都是选择最左边的元素作为基准:

但这对几乎已经有序的序列来说,并不是最好的选择,它将会导致算法的最坏表现。还有一种做法,就是选择中间的数或通过 Math.random() 来随机选取一个数作为基准,下面的代码实现就是以随机数作为基准。

代码实现

let quickSort = (arr) => {
  quick(arr, 0 , arr.length - 1)
}

let quick = (arr, left, right) => {
  let index
  if(left < right) {
    // 划分数组
    index = partition(arr, left, right)
    if(left < index - 1) {
      quick(arr, left, index - 1)
    }
    if(index < right) {
      quick(arr, index, right)
    }
  }
}

// 一次快排
let partition = (arr, left, right) => {
  // 取中间项为基准
  var datum = arr[Math.floor(Math.random() * (right - left + 1)) + left],
      i = left,
      j = right
  // 开始调整
  while(i <= j) {
    
    // 左指针右移
    while(arr[i] < datum) {
      i++
    }
    
    // 右指针左移
    while(arr[j] > datum) {
      j--
    }
    
    // 交换
    if(i <= j) {
      swap(arr, i, j)
      i += 1
      j -= 1
    }
  }
  return i
}

// 交换
let swap = (arr, i , j) => {
    let temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

// 测试
let arr = [1, 3, 2, 5, 4]
quickSort(arr)
console.log(arr) // [1, 2, 3, 4, 5]
// 第 2 个最大值
console.log(arr[arr.length - 2])  // 4

快排是从小到大排序,所以第 k 个最大值在 n-k 位置上

复杂度分析

  • 时间复杂度:O(nlogn)
  • 空间复杂度:O(nlogn)

Metadata

Metadata

Assignees

No one assigned

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions