Skip to content

scepter914/DepthAnything-ROS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DepthAnything-ROS

DepthAnything-ROS is a ROS2 wrapper for Depth-Anything.

nuscenes_demo.mp4

Environment

  • Ubuntu 22.04.01, ROS2 Humble
  • CUDA 12.3, cuDNN 8.9.5.29-1+cuda12.2, TensorRT 8.6.1.6-1+cuda12.0

Get Started

Set Up the Environment

    1. Install ROS2

See the ROS2 installation documentation for detailed instructions. To install ROS2 easily, I recommend using the Ansible script from Autoware. For more details, refer to the installation guide.

    1. Install dependencies
sudo apt install libgflags-dev libboost-all-dev
    1. Prepare your rosbag

If you don't have a rosbag, I recommend using rosbag for Nuscenes dataset.

  • Set ONNX Files

Place the ONNX files in the DepthAnything-ROS/data directory, or set the onnx_path parameter in the launch file.

<arg name="onnx_path" default="$(find-pkg-share depth_anything)/data/depth_anything_vitb14.onnx" />

To download the ONNX files for the pre-trained model, run the following commands:

# Install gdown
pip install gdown

# Download ONNX file
mkdir -p data && cd data
gdown 1jFTCJv0uJovPAww9PHCYAoek-KfeajK_

If you prefer to create the ONNX files yourself, you can use depth-anything-tensorrt.

Launch the node

ros2 launch depth_anything depth_anything.launch.xml

Interface

Input

  • input/image (sensor_msgs::msg::Image)
    • The input image.

Output

  • ~/output/depth_image (sensor_msgs::msg::Image)
    • The depth image generated by DepthAnything.

Parameters

  • onnx_path (string)
    • Default: $(find-pkg-share depth_anything)/data/depth_anything_vitb14.onnx
    • The path to the ONNX file.
  • precision (string)
    • Default: "fp32"
    • The precision mode to use for quantization. DepthAnything-ROS supports "fp32" or "fp16" (#2).

Notes

Building the TensorRT Engine

The first time you run the system, you may need to wait for about 5 minutes for the build process to complete.

Performance

  • Performance data is based on results from an RTX4090 and RTX2070.
Model Params RTX4090 TensorRT RTX2070 TensorRT
Depth-Anything-Small 24.8M 3 ms 27 ms, VRAM 300MB
Depth-Anything-Base 97.5M 6 ms 65 ms, VRAM 700MB
Depth-Anything-Large 335.3M 12 ms 200 ms, VRAM 1750MB

References

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published