Skip to content

Tensor Parallelism Support for AffineQuantizedTensor #988

@jerryzh168

Description

@jerryzh168

Recently we landed #939 to support tensor parallelism for int8 weight only quantization, another example: #785

now we can support tensor parallelism for other types of quantization as well.

Steps

1. Create test

Since we don't have many tests today, we can optimize for readability for now, so we can copy paste the test cases to a https://github.com/pytorch/ao/blob/main/test/dtypes/test_affine_quantized_tensor_parallel.py instead of inheriting from these test cases

For new tests you can follow

class TestFloat8dqTensorAffineQuantizedTensorParallel(TestFloat8dqAffineQuantizedTensorParallel):
QUANT_METHOD_FN = staticmethod(float8_dynamic_activation_float8_weight)
QUANT_METHOD_KWARGS = {"granularity": PerTensor()}
COMMON_DTYPES = [torch.bfloat16, torch.float16, torch.float32]
@common_utils.parametrize("dtype", COMMON_DTYPES)
@with_comms
@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
def test_tp(self, dtype):
return self._test_tp(dtype)
class TestFloat8dqRowAffineQuantizedTensorParallel(TestFloat8dqAffineQuantizedTensorParallel):
QUANT_METHOD_FN = staticmethod(float8_dynamic_activation_float8_weight)
QUANT_METHOD_KWARGS = {"granularity": PerRow()}
COMMON_DTYPES = [torch.bfloat16]
@common_utils.parametrize("dtype", COMMON_DTYPES)
@with_comms
@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
def test_tp(self, dtype):
return self._test_tp(dtype)
to create your own test case

2. Run the test

python test/dtypes/test_affine_quantized_tensor_parallel.py

3. Add support for missing ops until test passes

We'd expect people to add some slicing ops etc. to the corresponding TensorImpl tensor subclass

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions