This is the ultimate Python development container - a massive, comprehensive Ubuntu 24.04-based devcontainer that includes EVERYTHING you could possibly need for modern Python development, data science, machine learning, web development, and more, with perfect user ID matching to your host system.
- UID/GID matching with your host system (crucial for WSL file permissions)
- No more permission issues with files created in the container
- Proper sudo access without password prompts
- Latest Ubuntu LTS with all the newest packages
- Built from scratch as a custom Dockerfile (not a pre-built image)
- Full control over every component
- Multiple Python Versions (3.12, 3.11, 3.10) with pyenv
- Package Managers: pip, poetry, pipenv, conda/mamba
- Virtual Environment Tools: venv, virtualenv, pipenv, conda
- Python Build Tools: setuptools, wheel, build, twine, cython
- Code Quality: black, isort, flake8, pylint, mypy, bandit, ruff
- Testing Frameworks: pytest, unittest, tox, nox, hypothesis
- Core Libraries: numpy, pandas, matplotlib, seaborn, plotly
- Machine Learning: scikit-learn, tensorflow, pytorch, xgboost, lightgbm
- Deep Learning: keras, transformers, huggingface, accelerate
- Computer Vision: opencv, pillow, skimage, albumentations
- NLP: spacy, nltk, gensim, textblob
- Jupyter Stack: jupyterlab, notebook, ipywidgets, voila
- Data Processing: dask, polars, pyarrow, h5py, zarr
- FastAPI + uvicorn + gunicorn
- Django + Django REST Framework
- Flask + extensions ecosystem
- Streamlit for data apps
- Dash for analytics dashboards
- Celery for distributed task processing
- SQLAlchemy + Alembic for database work
- AWS CLI + boto3 + CDK
- Azure CLI + azure-sdk-for-python
- Google Cloud SDK + client libraries
- Docker & Docker Compose
- Kubernetes (kubectl, helm, tilt)
- Terraform + Pulumi
- Version Control: git + pre-commit hooks
- CI/CD: GitHub Actions tools, GitLab CI tools
- Monitoring: prometheus-client, grafana tools
- Logging: loguru, structlog, rich
- API Tools: httpx, requests, aiohttp, pydantic
- Database Tools: psycopg2, pymongo, redis-py, sqlite3
- Zsh with Oh My Zsh + plugins (autosuggestions, syntax highlighting)
- Starship prompt for beautiful shell
- Modern alternatives:
eza
,bat
,ripgrep
,fd
,fzf
,zoxide
- Python-specific tools:
pipx
,pyenv
,poetry
,ruff
,uv
- 50+ useful aliases pre-configured
- Node.js 20.x + npm (for web frontend, Jupyter extensions)
- Go (for performance tools)
- Rust (for performance tools, ruff, etc.)
- Java 21 (for big data tools like Spark)
- 20+ pre-installed extensions including Python, Jupyter, Copilot, Docker
- Optimized settings for Python development with intelligent code completion
- Port forwarding for all common development servers
- Integrated debugging for Python, Django, FastAPI, etc.
- Open this folder in VS Code
- When prompted, click "Reopen in Container"
- β Grab coffee (first build takes 15-20 minutes - it's a MONSTER!)
- π Start coding in your Python monster environment!
# Run the helper script to get your UID/GID
./start-monster.sh
# Or manually with docker-compose
export UID=$(id -u) GID=$(id -g) USER=$(whoami)
docker-compose -f .devcontainer/docker-compose.yml up -d --build
Python 3.12 (default) # Latest Python
Python 3.11 # Stable version
Python 3.10 # LTS support
pyenv # Python version management
pip # Standard package manager
poetry # Modern dependency management
pipenv # Virtual environments
conda/mamba # Data science ecosystem
pipx # Install Python applications
uv # Ultra-fast Python package installer
# Core Data Science
numpy pandas matplotlib seaborn plotly
jupyterlab notebook ipywidgets voila
scipy statsmodels sympy
# Machine Learning
scikit-learn xgboost lightgbm catboost
tensorflow pytorch keras
transformers accelerate datasets
huggingface-hub wandb mlflow
# Computer Vision & NLP
opencv-python pillow scikit-image
spacy nltk gensim textblob
albumentations torchvision
# Big Data & Performance
dask polars pyarrow
numba cupy (if GPU available)
spark (pyspark)
# Web Frameworks
fastapi uvicorn gunicorn
django djangorestframework
flask flask-restful flask-sqlalchemy
streamlit dash gradio
# Database & ORM
sqlalchemy alembic
psycopg2 pymongo redis
sqlite3 clickhouse-driver
# API & HTTP
httpx requests aiohttp
pydantic marshmallow
celery dramatiq
# Code Quality
black isort ruff
flake8 pylint mypy
bandit safety
pre-commit
# Testing
pytest unittest
tox nox
hypothesis factory-boy
coverage pytest-cov
# Debugging & Profiling
ipdb pdbpp
memory-profiler py-spy
line-profiler
# Cloud SDKs
aws-cli boto3 aws-cdk-lib
azure-cli azure-sdk-for-python
google-cloud-sdk
# Container & Orchestration
docker docker-compose
kubectl helm kubernetes
terraform pulumi
# Monitoring & Logging
prometheus-client grafana
loguru structlog rich
opentelemetry-api
eza # Better ls
bat # Better cat with syntax highlighting
ripgrep # Faster grep
fd # Better find
fzf # Fuzzy finder
zoxide # Smarter cd
starship # Beautiful prompt
hyperfine # Benchmarking
tokei # Code statistics
just # Command runner
gh # GitHub CLI
- Data Science & Machine Learning projects
- Web Development (FastAPI, Django, Flask)
- Scientific Computing & research
- Automation & scripting
- ETL/Data Engineering pipelines
- API Development & microservices
- Cloud-native applications
- Jupyter-based data analysis
- MLOps & model deployment
# Python shortcuts
py / py3 / python # python3
pip / pip3 # python -m pip
jupyter / lab # jupyterlab
notebook / nb # jupyter notebook
# Package management
poetry-install / pi # poetry install
poetry-add / pa # poetry add
poetry-shell / ps # poetry shell
# Code quality
black-check / bc # black --check
isort-check / ic # isort --check
mypy-check / mc # mypy .
flake8-check / fc # flake8 .
test / t # pytest
coverage / cov # pytest --cov
# Docker & Kubernetes
d / dc / k # docker/docker-compose/kubectl
dps / kgp / kgs # docker ps / kubectl get pods/services
# Modern CLI
ll / la / ls # eza variants (better ls)
cat # bat (syntax highlighted)
find / grep # fd / ripgrep (faster)
cd # zoxide (smarter)
Auto-forwarded ports: 3000
, 5000
, 8000
, 8080
, 8888
, 8501
, 9000
~/workspace/
βββ notebooks/ # Jupyter notebooks
βββ src/ # Source code
βββ data/ # Data files
βββ models/ # ML models
βββ tests/ # Test files
βββ docs/ # Documentation
βββ scripts/ # Utility scripts
βββ docker/ # Docker files
βββ kubernetes/ # K8s manifests
βββ terraform/ # Infrastructure code
βββ requirements/ # Requirements files
βββ .env.example # Environment template
βββ pyproject.toml # Project configuration
- Base: Ubuntu 24.04 LTS
- Size: ~12GB (it's a MONSTER!)
- Build time: 15-20 minutes first time
- Subsequent starts: <45 seconds
- User mapping: Perfect UID/GID match with host
- Python versions: 3.12 (default), 3.11, 3.10
- GPU support: CUDA-ready (if host GPU available)
- Docker Desktop with WSL 2 backend
- 12GB+ RAM allocated to Docker (recommended 16GB)
- 30GB+ disk space for the image
- VS Code with Remote-Containers extension
- Optional: NVIDIA GPU + Docker GPU support for ML workloads
- Everything Included - Stop installing packages, start coding
- Perfect Permission Mapping - No more
chown
headaches in WSL - Multiple Python Versions - Test across versions with pyenv
- Data Science Ready - All major ML/DS libraries pre-installed
- Web Development Complete - FastAPI, Django, Flask, all ready
- Cloud Native - AWS, Azure, GCP tools included
- Modern Tooling - Latest formatters, linters, and CLI tools
- Jupyter Integration - Full JupyterLab setup with extensions
- WSL Optimized - Built specifically for WSL workflows
- Team Consistency - Same environment for everyone
This is the Python container you use when you want EVERYTHING for Python development and don't want to think about setup ever again! ππ