Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions Bike_Price_Prediction
Original file line number Diff line number Diff line change
Expand Up @@ -98,3 +98,21 @@ y_pred = pipe.predict(X_test)

print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred))

step1 = ColumnTransformer(transformers=[
('col_tnf',OneHotEncoder(sparse=False,drop='first'),[1,2,5])
],remainder='passthrough')

step2 = Ridge(alpha=10)

pipe = Pipeline([
('step1',step1),
('step2',step2)
])

pipe.fit(X_train,y_train)

y_pred = pipe.predict(X_test)

print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred))
18 changes: 18 additions & 0 deletions Laptop Price Prediction
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,24 @@ plt.show()
sns.barplot(x=df['TypeName'],y=df['Price'])
plt.xticks(rotation='vertical')
plt.show()

step1 = ColumnTransformer(transformers=[
('col_tnf',OneHotEncoder(sparse=False,drop='first'),[0,1,7,10,11])
],remainder='passthrough')

step2 = Ridge(alpha=10)

pipe = Pipeline([
('step1',step1),
('step2',step2)
])

pipe.fit(X_train,y_train)

y_pred = pipe.predict(X_test)

print('R2 score',r2_score(y_test,y_pred))
print('MAE',mean_absolute_error(y_test,y_pred))
# Workstation type laptops are most expensive
# laptop price also depends upon on type of laptop

Expand Down