Skip to content

ENH: N4BiasFieldCorrection new arguments #911

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Sep 2, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 52 additions & 8 deletions nipype/interfaces/ants/segmentation.py
Original file line number Diff line number Diff line change
Expand Up @@ -226,12 +226,12 @@ class N4BiasFieldCorrectionInputSpec(ANTSCommandInputSpec):
usedefault=True,
desc='image dimension (2 or 3)')
input_image = File(argstr='--input-image %s', mandatory=True,
desc=('image to apply transformation to (generally a '
'coregistered functional)'))
desc=('image to apply transformation to (generally a '
'coregistered functional)'))
mask_image = File(argstr='--mask-image %s')
output_image = traits.Str(argstr='--output %s',
desc=('output file name'), genfile=True,
hash_files=False)
desc=('output file name'), genfile=True,
hash_files=False)
bspline_fitting_distance = traits.Float(argstr="--bsline-fitting [%g]")
shrink_factor = traits.Int(argstr="--shrink-factor %d")
n_iterations = traits.List(traits.Int(), argstr="--convergence [ %s",
Expand All @@ -240,10 +240,16 @@ class N4BiasFieldCorrectionInputSpec(ANTSCommandInputSpec):
convergence_threshold = traits.Float(argstr=",%g]",
requires=['n_iterations'],
position=2)
save_bias = traits.Bool(False, mandatory=True, usedefault=True,
desc=('True if the estimated bias should be saved'
' to file.'), xor=['bias_image'])
bias_image = File(desc=('Filename for the estimated bias.'),
hash_files=False)


class N4BiasFieldCorrectionOutputSpec(TraitedSpec):
output_image = File(exists=True, desc='Warped image')
bias_image = File(exists=True, desc='Estimated bias')


class N4BiasFieldCorrection(ANTSCommand):
Expand All @@ -254,9 +260,11 @@ class N4BiasFieldCorrection(ANTSCommand):
iterate between deconvolving the intensity histogram by a Gaussian, remapping
the intensities, and then spatially smoothing this result by a B-spline modeling
of the bias field itself. The modifications from and improvements obtained over
the original N3 algorithm are described in the following paper: N. Tustison et
al., N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging,
29(6):1310-1320, June 2010.
the original N3 algorithm are described in [Tustison2010]_.

.. [Tustison2010] N. Tustison et al.,
N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging,
29(6):1310-1320, June 2010.

Examples
--------
Expand All @@ -270,7 +278,16 @@ class N4BiasFieldCorrection(ANTSCommand):
>>> n4.inputs.n_iterations = [50,50,30,20]
>>> n4.inputs.convergence_threshold = 1e-6
>>> n4.cmdline
'N4BiasFieldCorrection --convergence [ 50x50x30x20 ,1e-06] --bsline-fitting [300] --image-dimension 3 --input-image structural.nii --output structural_corrected.nii --shrink-factor 3'
'N4BiasFieldCorrection --convergence [ 50x50x30x20 ,1e-06] \
--bsline-fitting [300] --image-dimension 3 --input-image structural.nii \
--output structural_corrected.nii --shrink-factor 3'

>>> n4_2 = N4BiasFieldCorrection()
>>> n4_2.inputs.input_image = 'structural.nii'
>>> n4_2.inputs.save_bias = True
>>> n4_2.cmdline
'N4BiasFieldCorrection --image-dimension 3 --input-image structural.nii \
--output [structural_corrected.nii,structural_bias.nii]'
"""

_cmd = 'N4BiasFieldCorrection'
Expand All @@ -284,9 +301,36 @@ def _gen_filename(self, name):
_, name, ext = split_filename(self.inputs.input_image)
output = name + '_corrected' + ext
return output

if name == 'bias_image':
output = self.inputs.bias_image
if not isdefined(output):
_, name, ext = split_filename(self.inputs.input_image)
output = name + '_bias' + ext
return output
return None

def _format_arg(self, name, trait_spec, value):
if ((name == 'output_image') and
(self.inputs.save_bias or isdefined(self.inputs.bias_image))):
bias_image = self._gen_filename('bias_image')
output = self._gen_filename('output_image')
newval = '[%s,%s]' % (output, bias_image)
return trait_spec.argstr % newval

return super(N4BiasFieldCorrection,
self)._format_arg(name, trait_spec, value)

def _parse_inputs(self, skip=None):
if skip is None:
skip = []
skip += ['save_bias', 'bias_image']
return super(N4BiasFieldCorrection, self)._parse_inputs(skip=skip)

def _list_outputs(self):
outputs = self._outputs().get()
outputs['output_image'] = os.path.abspath(self._gen_filename('output_image'))

if self.inputs.save_bias or isdefined(self.inputs.bias_image):
outputs['bias_image'] = os.path.abspath(self._gen_filename('bias_image'))
return outputs
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@
def test_N4BiasFieldCorrection_inputs():
input_map = dict(args=dict(argstr='%s',
),
bias_image=dict(hash_files=False,
),
bspline_fitting_distance=dict(argstr='--bsline-fitting [%g]',
),
convergence_threshold=dict(argstr=',%g]',
Expand Down Expand Up @@ -37,6 +39,10 @@ def test_N4BiasFieldCorrection_inputs():
genfile=True,
hash_files=False,
),
save_bias=dict(mandatory=True,
usedefault=True,
xor=['bias_image'],
),
shrink_factor=dict(argstr='--shrink-factor %d',
),
terminal_output=dict(mandatory=True,
Expand All @@ -50,7 +56,8 @@ def test_N4BiasFieldCorrection_inputs():
yield assert_equal, getattr(inputs.traits()[key], metakey), value

def test_N4BiasFieldCorrection_outputs():
output_map = dict(output_image=dict(),
output_map = dict(bias_image=dict(),
output_image=dict(),
)
outputs = N4BiasFieldCorrection.output_spec()

Expand Down