██ ██████ ███████ ███ ██ ███████ ████████
██ ██ ██ ████ ██ ██ ██
██ ██ █████ ██ ██ ██ █████ ██
██ ██ ██ ██ ██ ██ ██ ██
██ ██████ ███████ ██ ████ ███████ ██
A deep learning driven library for high energy physics++
See autogenerated docs:
https://mieskolainen.github.io/icenet
Start with the installation:
docs/source/notes/installation.rst
For end-to-end deep learning examples, see e.g. github actions (CI) workflows under
.github/workflows
Introduction talk (2023):
docs/pdf/CMS_ML_forum_Mieskolainen_080223.pdf
Conditional AI reweighting (2025):
ICEBOOST = xgboost + torch autograd (2025):
If you use this work in your research -- especially if you find algorithms, their application or ideas novel, please include a citation:
@software{icenet,
author = "{Mikael Mieskolainen}",
title = "ICENET: a deep learning library for HEP",
url = "https://github.com/mieskolainen/icenet",
version = {X.Y.Z},
date = {2025-XX-YY},
}
Mikael Mieskolainen, 2025
[email protected]