Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
110 changes: 109 additions & 1 deletion torchft/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,10 +14,118 @@
dataloader frequently to avoid duplicate batches.
"""

from typing import Optional
import math
from collections.abc import Iterator
from typing import Optional, TypeVar

import torch
import torch.distributed as dist
from torch.utils import data
from torch.utils.data.dataset import Dataset
from torch.utils.data.sampler import Sampler

_T_co = TypeVar("_T_co", covariant=True)


class SkipDistributedSampler(Sampler[_T_co]):
def __init__(
self,
dataset: Dataset,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
seed: int = 0,
drop_last: bool = False,
skip_samples: int = 0,
) -> None:
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
if rank >= num_replicas or rank < 0:
raise ValueError(
f"Invalid rank {rank}, rank should be in the interval [0, {num_replicas - 1}]"
)
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.drop_last = drop_last
self.skip_samples = skip_samples
# If the dataset length is evenly divisible by # of replicas, then there
# is no need to drop any data, since the dataset will be split equally.
if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
# Split to nearest available length that is evenly divisible.
# This is to ensure each rank receives the same amount of data when
# using this Sampler.
self.num_samples = math.ceil(
(len(self.dataset) - self.skip_samples - self.num_replicas)
/ self.num_replicas # type: ignore[arg-type]
)
else:
self.num_samples = math.ceil(
(len(self.dataset) - self.skip_samples) / self.num_replicas
) # type: ignore[arg-type]
self.total_size = self.num_samples * self.num_replicas
self.shuffle = shuffle
self.seed = seed

def __iter__(self) -> Iterator[_T_co]:
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
else:
indices = list(range(len(self.dataset))) # type: ignore[arg-type]

if not self.drop_last:
indices = indices[self.skip_samples : len(indices)]
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size / len(indices)))[
:padding_size
]
else:
# remove tail of data to make it evenly divisible.
indices = indices[self.skip_samples : self.skip_samples + self.total_size]
if len(indices) != self.total_size:
raise AssertionError(
f"Number of indices ({len(indices)}) does not match total_size ({self.total_size})"
)

# subsample
indices = indices[self.rank : self.total_size : self.num_replicas]
if len(indices) != self.num_samples:
raise AssertionError(
f"Number of subsampled indices ({len(indices)}) does not match num_samples ({self.num_samples})"
)

# pyrefly: ignore # bad-return
return iter(indices)

def __len__(self) -> int:
return self.num_samples

def set_epoch(self, epoch: int) -> None:
r"""
Set the epoch for this sampler.

When :attr:`shuffle=True`, this ensures all replicas
use a different random ordering for each epoch. Otherwise, the next iteration of this
sampler will yield the same ordering.

Args:
epoch (int): Epoch number.
"""
self.epoch = epoch


# pyre-fixme[24]: expected generic parameter
Expand Down
83 changes: 82 additions & 1 deletion torchft/data_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

from torch.utils.data import Dataset

from torchft.data import DistributedSampler
from torchft.data import DistributedSampler, SkipDistributedSampler


class DummyDataset(Dataset):
Expand Down Expand Up @@ -37,3 +37,84 @@ def test_distributed_sampler(self) -> None:

sampler_iter = iter(sampler)
self.assertEqual(next(sampler_iter), 500)

def test_skip_distributed_sampler(self):
dataset_length = 100
dataset = DummyDataset(dataset_length)

# Case 1: sample is not skipped
for drop_last in [True, False]:
num_replicas = 7
for rank in range(num_replicas):
sampler = SkipDistributedSampler(
dataset=dataset,
num_replicas=num_replicas,
rank=rank,
shuffle=False,
drop_last=drop_last,
)
cur = rank
for idx in sampler:
self.assertEqual(
idx, (cur % dataset_length), f"idx={idx}, cur={cur}"
)
cur += num_replicas
# If drop_last is True, read ceil((100-7)/7)*7=98 samples totally.
# If drop_last is False, read ceil(100/7)*7=105 samples totally.
if drop_last:
self.assertEqual(cur, 98 + rank, f"rank={rank}, cur={cur}")
else:
self.assertEqual(cur, 105 + rank, f"rank={rank}, cur={cur}")

# Case 2: sample is skipped
for drop_last in [True, False]:
num_replicas = 7
skip_samples = 10
for rank in range(num_replicas):
sampler = SkipDistributedSampler(
dataset=dataset,
num_replicas=num_replicas,
rank=rank,
shuffle=False,
drop_last=drop_last,
skip_samples=skip_samples,
)
cur = rank
for idx in sampler:
expected = (
((cur + skip_samples) % dataset_length + skip_samples)
if (cur + skip_samples) >= dataset_length
else (cur + skip_samples)
)
self.assertEqual(idx, expected, f"idx={idx}, expected={expected}")
cur += num_replicas
# If drop_last is True, read ceil((100-10-7)/7)*7=84 samples totally.
# If drop_last is False, read ceil((100-10)/7)*7=91 samples totally.
if drop_last:
self.assertEqual(cur, 84 + rank, f"rank={rank}, cur={cur}")
else:
self.assertEqual(cur, 91 + rank, f"rank={rank}, cur={cur}")

# Case 3: drop last is False and padding size is larger than number of indices
# If skip_samples is 90, and num_replicas is 31, then the indices is [90, 92, ..., 99].
# It means only 10 samples are left, so padding size is 21 which is larger than 10.
num_replicas = 31
skip_samples = 90
expected = list(range(90, 100))
expected = (expected * 4)[:31]
for rank in range(num_replicas):
sampler = SkipDistributedSampler(
dataset=dataset,
num_replicas=num_replicas,
rank=rank,
shuffle=False,
drop_last=False,
skip_samples=skip_samples,
)
cnt = 0
for idx in sampler:
self.assertEqual(
idx, expected[rank], f"idx={idx}, rank={rank}, expected={expected}"
)
cnt += 1
self.assertTrue(cnt, 1)
Loading