Skip to content

[Question] GP classification / discrete outputs #640

@DavidWalz

Description

@DavidWalz

I'm implementing a BO loop with feasibility constraints along the lines of https://botorch.org/tutorials/constrained_multi_objective_bo
However, in my case evaluations of the feasibility constraint are discrete (0, 1) for which a GP model with a binomial likelihood seems to a suitable approach.

import gpytorch

class GPClassificationModel(gpytorch.models.ApproximateGP):
    def __init__(self, train_x):
        variational_distribution = gpytorch.variational.CholeskyVariationalDistribution(train_x.size(0))
        variational_strategy = gpytorch.variational.VariationalStrategy(
            self, train_x, variational_distribution, learn_inducing_locations=True
        )
        super(GPClassificationModel, self).__init__(variational_strategy)
        self.mean_module = gpytorch.means.ConstantMean()
        self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())

    def forward(self, x):
        mean_x = self.mean_module(x)
        covar_x = self.covar_module(x)
        return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)

model = GPClassificationModel(train_x)
likelihood = gpytorch.likelihoods.BernoulliLikelihood()
mll = gpytorch.mlls.VariationalELBO(likelihood, model, len(train_y), combine_terms=False)
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)

model.train()
likelihood.train()

for i in range(400):
    optimizer.zero_grad()
    output = model(train_x)
    log_lik, kl_div, log_prior = mll(output, train_y)
    loss = -(log_lik - kl_div + log_prior)
    loss.backward()
    optimizer.step()

Now I'm wondering how to feed this model together with a SingleTaskGP to the acquisition function.
Do I have to base my GPClassificationModel on ApproximateGP or can I simply combine it in ModelListGPyTorchModel?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions