-
Notifications
You must be signed in to change notification settings - Fork 350
use quickSort from sort.Sort #207
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 5 commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,178 @@ | ||
| // Copyright 2009 The Go Authors. All rights reserved. | ||
| // Use of this source code is governed by a BSD-style | ||
| // license that can be found in the LICENSE file. | ||
|
|
||
| package flate | ||
|
|
||
| // Sort sorts data. | ||
| // It makes one call to data.Len to determine n, and O(n*log(n)) calls to | ||
| // data.Less and data.Swap. The sort is not guaranteed to be stable. | ||
| func sortByFreq(data []literalNode) { | ||
| n := len(data) | ||
| quickSortByFreq(data, 0, n, maxDepth(n)) | ||
| } | ||
|
|
||
| func quickSortByFreq(data []literalNode, a, b, maxDepth int) { | ||
| for b-a > 12 { // Use ShellSort for slices <= 12 elements | ||
| if maxDepth == 0 { | ||
| heapSort(data, a, b) | ||
| return | ||
| } | ||
| maxDepth-- | ||
| mlo, mhi := doPivotByFreq(data, a, b) | ||
| // Avoiding recursion on the larger subproblem guarantees | ||
| // a stack depth of at most lg(b-a). | ||
| if mlo-a < b-mhi { | ||
| quickSortByFreq(data, a, mlo, maxDepth) | ||
| a = mhi // i.e., quickSortByFreq(data, mhi, b) | ||
| } else { | ||
| quickSortByFreq(data, mhi, b, maxDepth) | ||
| b = mlo // i.e., quickSortByFreq(data, a, mlo) | ||
| } | ||
| } | ||
| if b-a > 1 { | ||
| // Do ShellSort pass with gap 6 | ||
| // It could be written in this simplified form cause b-a <= 12 | ||
| for i := a + 6; i < b; i++ { | ||
| if data[i].freq == data[i-6].freq && data[i].literal < data[i-6].literal || data[i].freq < data[i-6].freq { | ||
| data[i], data[i-6] = data[i-6], data[i] | ||
| } | ||
| } | ||
| insertionSortByFreq(data, a, b) | ||
| } | ||
| } | ||
|
|
||
| // siftDownByFreq implements the heap property on data[lo, hi). | ||
| // first is an offset into the array where the root of the heap lies. | ||
| func siftDownByFreq(data []literalNode, lo, hi, first int) { | ||
| root := lo | ||
| for { | ||
| child := 2*root + 1 | ||
| if child >= hi { | ||
| break | ||
| } | ||
| if child+1 < hi && (data[first+child].freq == data[first+child+1].freq && data[first+child].literal < data[first+child+1].literal || data[first+child].freq < data[first+child+1].freq) { | ||
| child++ | ||
| } | ||
| if data[first+root].freq == data[first+child].freq && data[first+root].literal > data[first+child].literal || data[first+root].freq > data[first+child].freq { | ||
| return | ||
| } | ||
| data[first+root], data[first+child] = data[first+child], data[first+root] | ||
| root = child | ||
| } | ||
| } | ||
| func doPivotByFreq(data []literalNode, lo, hi int) (midlo, midhi int) { | ||
| m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow. | ||
| if hi-lo > 40 { | ||
| // Tukey's ``Ninther,'' median of three medians of three. | ||
| s := (hi - lo) / 8 | ||
| medianOfThreeSortByFreq(data, lo, lo+s, lo+2*s) | ||
| medianOfThreeSortByFreq(data, m, m-s, m+s) | ||
| medianOfThreeSortByFreq(data, hi-1, hi-1-s, hi-1-2*s) | ||
| } | ||
| medianOfThreeSortByFreq(data, lo, m, hi-1) | ||
|
|
||
| // Invariants are: | ||
| // data[lo] = pivot (set up by ChoosePivot) | ||
| // data[lo < i < a] < pivot | ||
| // data[a <= i < b] <= pivot | ||
| // data[b <= i < c] unexamined | ||
| // data[c <= i < hi-1] > pivot | ||
| // data[hi-1] >= pivot | ||
| pivot := lo | ||
| a, c := lo+1, hi-1 | ||
|
|
||
| for ; a < c && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ { | ||
| } | ||
| b := a | ||
| for { | ||
| for ; b < c && (data[pivot].freq == data[b].freq && data[pivot].literal > data[b].literal || data[pivot].freq > data[b].freq); b++ { // data[b] <= pivot | ||
| } | ||
| for ; b < c && (data[pivot].freq == data[c-1].freq && data[pivot].literal < data[c-1].literal || data[pivot].freq < data[c-1].freq); c-- { // data[c-1] > pivot | ||
| } | ||
| if b >= c { | ||
| break | ||
| } | ||
| // data[b] > pivot; data[c-1] <= pivot | ||
| data[b], data[c-1] = data[c-1], data[b] | ||
| b++ | ||
| c-- | ||
| } | ||
| // If hi-c<3 then there are duplicates (by property of median of nine). | ||
| // Let's be a bit more conservative, and set border to 5. | ||
| protect := hi-c < 5 | ||
| if !protect && hi-c < (hi-lo)/4 { | ||
| // Lets test some points for equality to pivot | ||
| dups := 0 | ||
| if data[pivot].freq == data[hi-1].freq && data[pivot].literal > data[hi-1].literal || data[pivot].freq > data[hi-1].freq { // data[hi-1] = pivot | ||
| data[c], data[hi-1] = data[hi-1], data[c] | ||
| c++ | ||
| dups++ | ||
| } | ||
| if data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq { // data[b-1] = pivot | ||
| b-- | ||
| dups++ | ||
| } | ||
| // m-lo = (hi-lo)/2 > 6 | ||
| // b-lo > (hi-lo)*3/4-1 > 8 | ||
| // ==> m < b ==> data[m] <= pivot | ||
| if data[m].freq == data[pivot].freq && data[m].literal > data[pivot].literal || data[m].freq > data[pivot].freq { // data[m] = pivot | ||
| data[m], data[b-1] = data[b-1], data[m] | ||
| b-- | ||
| dups++ | ||
| } | ||
| // if at least 2 points are equal to pivot, assume skewed distribution | ||
| protect = dups > 1 | ||
| } | ||
| if protect { | ||
| // Protect against a lot of duplicates | ||
| // Add invariant: | ||
| // data[a <= i < b] unexamined | ||
| // data[b <= i < c] = pivot | ||
| for { | ||
| for ; a < b && (data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq); b-- { // data[b] == pivot | ||
| } | ||
| for ; a < b && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ { // data[a] < pivot | ||
| } | ||
| if a >= b { | ||
| break | ||
| } | ||
| // data[a] == pivot; data[b-1] < pivot | ||
| data[a], data[b-1] = data[b-1], data[a] | ||
| a++ | ||
| b-- | ||
| } | ||
| } | ||
| // Swap pivot into middle | ||
| data[pivot], data[b-1] = data[b-1], data[pivot] | ||
| return b - 1, c | ||
| } | ||
|
|
||
| // Insertion sort | ||
| func insertionSortByFreq(data []literalNode, a, b int) { | ||
| for i := a + 1; i < b; i++ { | ||
| for j := i; j > a && (data[j].freq == data[j-1].freq && data[j].literal < data[j-1].literal || data[j].freq < data[j-1].freq); j-- { | ||
| data[j], data[j-1] = data[j-1], data[j] | ||
| } | ||
| } | ||
| } | ||
|
|
||
| // quickSortByFreq, loosely following Bentley and McIlroy, | ||
| // ``Engineering a Sort Function,'' SP&E November 1993. | ||
|
|
||
| // medianOfThreeSortByFreq moves the median of the three values data[m0], data[m1], data[m2] into data[m1]. | ||
| func medianOfThreeSortByFreq(data []literalNode, m1, m0, m2 int) { | ||
| // sort 3 elements | ||
| if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq { | ||
| data[m1], data[m0] = data[m0], data[m1] | ||
| } | ||
| // data[m0] <= data[m1] | ||
| if data[m2].freq == data[m1].freq && data[m2].literal < data[m1].literal || data[m2].freq < data[m1].freq { | ||
| data[m2], data[m1] = data[m1], data[m2] | ||
| // data[m0] <= data[m2] && data[m1] < data[m2] | ||
| if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq { | ||
| data[m1], data[m0] = data[m0], data[m1] | ||
| } | ||
| } | ||
| // now data[m0] <= data[m1] <= data[m2] | ||
| } |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.