-
Notifications
You must be signed in to change notification settings - Fork 149
xsk: exit NAPI loop when AF_XDP Rx ring is full #6
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Master branch: 95cec14 patch https://patchwork.ozlabs.org/project/netdev/patch/[email protected]/ applied successfully |
Master branch: f9bec5d patch https://patchwork.ozlabs.org/project/netdev/patch/[email protected]/ applied successfully |
The error codes returned by xdp_do_redirect() when redirecting a frame to an AF_XDP socket has not been very useful. A driver could not distinguish between different errors. Prior this change the following codes where used: Socket not bound or incorrect queue/netdev: EINVAL XDP frame/AF_XDP buffer size mismatch: ENOSPC Could not allocate buffer (copy mode): ENOSPC AF_XDP Rx buffer full: ENOSPC After this change: Socket not bound or incorrect queue/netdev: EINVAL XDP frame/AF_XDP buffer size mismatch: ENOSPC Could not allocate buffer (copy mode): ENOMEM AF_XDP Rx buffer full: ENOBUFS An AF_XDP zero-copy driver can now potentially determine if the failure was due to a full Rx buffer, and if so stop processing more frames, yielding to the userland AF_XDP application. Signed-off-by: Björn Töpel <[email protected]> --- net/xdp/xsk.c | 2 +- net/xdp/xsk_queue.h | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-)
Introduce the xdp_do_redirect_ext() which returns additional information to the caller. For now, it is the type of map that the packet was redirected to. This enables the driver to have more fine-grained control, e.g. is the redirect fails due to full AF_XDP Rx queue (error code ENOBUFS and map is XSKMAP), a zero-copy enabled driver should yield to userland as soon as possible. Signed-off-by: Björn Töpel <[email protected]> --- include/linux/filter.h | 2 ++ net/core/filter.c | 16 ++++++++++++++-- 2 files changed, 16 insertions(+), 2 deletions(-)
The xsk_do_redirect_rx_full() helper can be used to check if a failure of xdp_do_redirect() was due to the AF_XDP socket had a full Rx ring. Signed-off-by: Björn Töpel <[email protected]> --- include/net/xdp_sock_drv.h | 9 +++++++++ 1 file changed, 9 insertions(+)
Make the AF_XDP zero-copy path aware that the reason for redirect failure was due to full Rx queue. If so, exit the napi loop as soon as possible (exit the softirq processing), so that the userspace AF_XDP process can hopefully empty the Rx queue. This mainly helps the "one core scenario", where the userland process and Rx softirq processing is on the same core. Note that the early exit can only be performed if the "need wakeup" feature is enabled, because otherwise there is no notification mechanism available from the kernel side. This requires that the driver starts using the newly introduced xdp_do_redirect_ext() and xsk_do_redirect_rx_full() functions. Signed-off-by: Björn Töpel <[email protected]> --- drivers/net/ethernet/intel/i40e/i40e_xsk.c | 23 +++++++++++++++------- 1 file changed, 16 insertions(+), 7 deletions(-)
Make the AF_XDP zero-copy path aware that the reason for redirect failure was due to full Rx queue. If so, exit the napi loop as soon as possible (exit the softirq processing), so that the userspace AF_XDP process can hopefully empty the Rx queue. This mainly helps the "one core scenario", where the userland process and Rx softirq processing is on the same core. Note that the early exit can only be performed if the "need wakeup" feature is enabled, because otherwise there is no notification mechanism available from the kernel side. This requires that the driver starts using the newly introduced xdp_do_redirect_ext() and xsk_do_redirect_rx_full() functions. Signed-off-by: Björn Töpel <[email protected]> --- drivers/net/ethernet/intel/ice/ice_xsk.c | 23 ++++++++++++++++------- 1 file changed, 16 insertions(+), 7 deletions(-)
Make the AF_XDP zero-copy path aware that the reason for redirect failure was due to full Rx queue. If so, exit the napi loop as soon as possible (exit the softirq processing), so that the userspace AF_XDP process can hopefully empty the Rx queue. This mainly helps the "one core scenario", where the userland process and Rx softirq processing is on the same core. Note that the early exit can only be performed if the "need wakeup" feature is enabled, because otherwise there is no notification mechanism available from the kernel side. This requires that the driver starts using the newly introduced xdp_do_redirect_ext() and xsk_do_redirect_rx_full() functions. Signed-off-by: Björn Töpel <[email protected]> --- drivers/net/ethernet/intel/ixgbe/ixgbe_xsk.c | 23 ++++++++++++++------ 1 file changed, 16 insertions(+), 7 deletions(-)
Master branch: bc0b5a0 patch https://patchwork.ozlabs.org/project/netdev/patch/[email protected]/ applied successfully |
At least one diff in series https://patchwork.ozlabs.org/project/netdev/list/?series=199536 expired. Closing PR. |
I got the following lockdep splat while testing: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00172-g021118712e59 #932 Not tainted ------------------------------------------------------ btrfs/229626 is trying to acquire lock: ffffffff828513f0 (cpu_hotplug_lock){++++}-{0:0}, at: alloc_workqueue+0x378/0x450 but task is already holding lock: ffff889dd3889518 (&fs_info->scrub_lock){+.+.}-{3:3}, at: btrfs_scrub_dev+0x11c/0x630 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #7 (&fs_info->scrub_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_scrub_dev+0x11c/0x630 btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4 btrfs_ioctl+0x2799/0x30a0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #6 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_run_dev_stats+0x49/0x480 commit_cowonly_roots+0xb5/0x2a0 btrfs_commit_transaction+0x516/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #5 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_commit_transaction+0x4bb/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (&fs_info->reloc_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_record_root_in_trans+0x43/0x70 start_transaction+0xd1/0x5d0 btrfs_dirty_inode+0x42/0xd0 touch_atime+0xa1/0xd0 btrfs_file_mmap+0x3f/0x60 mmap_region+0x3a4/0x640 do_mmap+0x376/0x580 vm_mmap_pgoff+0xd5/0x120 ksys_mmap_pgoff+0x193/0x230 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x68/0x90 _copy_to_user+0x1e/0x80 perf_read+0x141/0x2c0 vfs_read+0xad/0x1b0 ksys_read+0x5f/0xe0 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&cpuctx_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x88/0x150 perf_event_init+0x1db/0x20b start_kernel+0x3ae/0x53c secondary_startup_64+0xa4/0xb0 -> #1 (pmus_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x4f/0x150 cpuhp_invoke_callback+0xb1/0x900 _cpu_up.constprop.26+0x9f/0x130 cpu_up+0x7b/0xc0 bringup_nonboot_cpus+0x4f/0x60 smp_init+0x26/0x71 kernel_init_freeable+0x110/0x258 kernel_init+0xa/0x103 ret_from_fork+0x1f/0x30 -> #0 (cpu_hotplug_lock){++++}-{0:0}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 cpus_read_lock+0x39/0xb0 alloc_workqueue+0x378/0x450 __btrfs_alloc_workqueue+0x15d/0x200 btrfs_alloc_workqueue+0x51/0x160 scrub_workers_get+0x5a/0x170 btrfs_scrub_dev+0x18c/0x630 btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4 btrfs_ioctl+0x2799/0x30a0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: cpu_hotplug_lock --> &fs_devs->device_list_mutex --> &fs_info->scrub_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->scrub_lock); lock(&fs_devs->device_list_mutex); lock(&fs_info->scrub_lock); lock(cpu_hotplug_lock); *** DEADLOCK *** 2 locks held by btrfs/229626: #0: ffff88bfe8bb86e0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: btrfs_scrub_dev+0xbd/0x630 #1: ffff889dd3889518 (&fs_info->scrub_lock){+.+.}-{3:3}, at: btrfs_scrub_dev+0x11c/0x630 stack backtrace: CPU: 15 PID: 229626 Comm: btrfs Kdump: loaded Not tainted 5.8.0-rc7-00172-g021118712e59 #932 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 ? alloc_workqueue+0x378/0x450 cpus_read_lock+0x39/0xb0 ? alloc_workqueue+0x378/0x450 alloc_workqueue+0x378/0x450 ? rcu_read_lock_sched_held+0x52/0x80 __btrfs_alloc_workqueue+0x15d/0x200 btrfs_alloc_workqueue+0x51/0x160 scrub_workers_get+0x5a/0x170 btrfs_scrub_dev+0x18c/0x630 ? start_transaction+0xd1/0x5d0 btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4 btrfs_ioctl+0x2799/0x30a0 ? do_sigaction+0x102/0x250 ? lockdep_hardirqs_on_prepare+0xca/0x160 ? _raw_spin_unlock_irq+0x24/0x30 ? trace_hardirqs_on+0x1c/0xe0 ? _raw_spin_unlock_irq+0x24/0x30 ? do_sigaction+0x102/0x250 ? ksys_ioctl+0x83/0xc0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This happens because we're allocating the scrub workqueues under the scrub and device list mutex, which brings in a whole host of other dependencies. Because the work queue allocation is done with GFP_KERNEL, it can trigger reclaim, which can lead to a transaction commit, which in turns needs the device_list_mutex, it can lead to a deadlock. A different problem for which this fix is a solution. Fix this by moving the actual allocation outside of the scrub lock, and then only take the lock once we're ready to actually assign them to the fs_info. We'll now have to cleanup the workqueues in a few more places, so I've added a helper to do the refcount dance to safely free the workqueues. CC: [email protected] # 5.4+ Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
…s metrics" test Linux 5.9 introduced perf test case "Parse and process metrics" and on s390 this test case always dumps core: [root@t35lp67 perf]# ./perf test -vvvv -F 67 67: Parse and process metrics : --- start --- metric expr inst_retired.any / cpu_clk_unhalted.thread for IPC parsing metric: inst_retired.any / cpu_clk_unhalted.thread Segmentation fault (core dumped) [root@t35lp67 perf]# I debugged this core dump and gdb shows this call chain: (gdb) where #0 0x000003ffabc3192a in __strnlen_c_1 () from /lib64/libc.so.6 #1 0x000003ffabc293de in strcasestr () from /lib64/libc.so.6 #2 0x0000000001102ba2 in match_metric(list=0x1e6ea20 "inst_retired.any", n=<optimized out>) at util/metricgroup.c:368 #3 find_metric (map=<optimized out>, map=<optimized out>, metric=0x1e6ea20 "inst_retired.any") at util/metricgroup.c:765 #4 __resolve_metric (ids=0x0, map=<optimized out>, metric_list=0x0, metric_no_group=<optimized out>, m=<optimized out>) at util/metricgroup.c:844 #5 resolve_metric (ids=0x0, map=0x0, metric_list=0x0, metric_no_group=<optimized out>) at util/metricgroup.c:881 #6 metricgroup__add_metric (metric=<optimized out>, metric_no_group=metric_no_group@entry=false, events=<optimized out>, events@entry=0x3ffd84fb878, metric_list=0x0, metric_list@entry=0x3ffd84fb868, map=0x0) at util/metricgroup.c:943 #7 0x00000000011034ae in metricgroup__add_metric_list (map=0x13f9828 <map>, metric_list=0x3ffd84fb868, events=0x3ffd84fb878, metric_no_group=<optimized out>, list=<optimized out>) at util/metricgroup.c:988 #8 parse_groups (perf_evlist=perf_evlist@entry=0x1e70260, str=str@entry=0x12f34b2 "IPC", metric_no_group=<optimized out>, metric_no_merge=<optimized out>, fake_pmu=fake_pmu@entry=0x1462f18 <perf_pmu.fake>, metric_events=0x3ffd84fba58, map=0x1) at util/metricgroup.c:1040 #9 0x0000000001103eb2 in metricgroup__parse_groups_test( evlist=evlist@entry=0x1e70260, map=map@entry=0x13f9828 <map>, str=str@entry=0x12f34b2 "IPC", metric_no_group=metric_no_group@entry=false, metric_no_merge=metric_no_merge@entry=false, metric_events=0x3ffd84fba58) at util/metricgroup.c:1082 #10 0x00000000010c84d8 in __compute_metric (ratio2=0x0, name2=0x0, ratio1=<synthetic pointer>, name1=0x12f34b2 "IPC", vals=0x3ffd84fbad8, name=0x12f34b2 "IPC") at tests/parse-metric.c:159 #11 compute_metric (ratio=<synthetic pointer>, vals=0x3ffd84fbad8, name=0x12f34b2 "IPC") at tests/parse-metric.c:189 #12 test_ipc () at tests/parse-metric.c:208 ..... ..... omitted many more lines This test case was added with commit 218ca91 ("perf tests: Add parse metric test for frontend metric"). When I compile with make DEBUG=y it works fine and I do not get a core dump. It turned out that the above listed function call chain worked on a struct pmu_event array which requires a trailing element with zeroes which was missing. The marco map_for_each_event() loops over that array tests for members metric_expr/metric_name/metric_group being non-NULL. Adding this element fixes the issue. Output after: [root@t35lp46 perf]# ./perf test 67 67: Parse and process metrics : Ok [root@t35lp46 perf]# Committer notes: As Ian remarks, this is not s390 specific: <quote Ian> This also shows up with address sanitizer on all architectures (perhaps change the patch title) and perhaps add a "Fixes: <commit>" tag. ================================================================= ==4718==ERROR: AddressSanitizer: global-buffer-overflow on address 0x55c93b4d59e8 at pc 0x55c93a1541e2 bp 0x7ffd24327c60 sp 0x7ffd24327c58 READ of size 8 at 0x55c93b4d59e8 thread T0 #0 0x55c93a1541e1 in find_metric tools/perf/util/metricgroup.c:764:2 #1 0x55c93a153e6c in __resolve_metric tools/perf/util/metricgroup.c:844:9 #2 0x55c93a152f18 in resolve_metric tools/perf/util/metricgroup.c:881:9 #3 0x55c93a1528db in metricgroup__add_metric tools/perf/util/metricgroup.c:943:9 #4 0x55c93a151996 in metricgroup__add_metric_list tools/perf/util/metricgroup.c:988:9 #5 0x55c93a1511b9 in parse_groups tools/perf/util/metricgroup.c:1040:8 #6 0x55c93a1513e1 in metricgroup__parse_groups_test tools/perf/util/metricgroup.c:1082:9 #7 0x55c93a0108ae in __compute_metric tools/perf/tests/parse-metric.c:159:8 #8 0x55c93a010744 in compute_metric tools/perf/tests/parse-metric.c:189:9 #9 0x55c93a00f5ee in test_ipc tools/perf/tests/parse-metric.c:208:2 #10 0x55c93a00f1e8 in test__parse_metric tools/perf/tests/parse-metric.c:345:2 #11 0x55c939fd7202 in run_test tools/perf/tests/builtin-test.c:410:9 #12 0x55c939fd6736 in test_and_print tools/perf/tests/builtin-test.c:440:9 #13 0x55c939fd58c3 in __cmd_test tools/perf/tests/builtin-test.c:661:4 #14 0x55c939fd4e02 in cmd_test tools/perf/tests/builtin-test.c:807:9 #15 0x55c939e4763d in run_builtin tools/perf/perf.c:313:11 #16 0x55c939e46475 in handle_internal_command tools/perf/perf.c:365:8 #17 0x55c939e4737e in run_argv tools/perf/perf.c:409:2 #18 0x55c939e45f7e in main tools/perf/perf.c:539:3 0x55c93b4d59e8 is located 0 bytes to the right of global variable 'pme_test' defined in 'tools/perf/tests/parse-metric.c:17:25' (0x55c93b4d54a0) of size 1352 SUMMARY: AddressSanitizer: global-buffer-overflow tools/perf/util/metricgroup.c:764:2 in find_metric Shadow bytes around the buggy address: 0x0ab9a7692ae0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ab9a7692af0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ab9a7692b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ab9a7692b10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ab9a7692b20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 =>0x0ab9a7692b30: 00 00 00 00 00 00 00 00 00 00 00 00 00[f9]f9 f9 0x0ab9a7692b40: f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 0x0ab9a7692b50: f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 0x0ab9a7692b60: f9 f9 f9 f9 f9 f9 f9 f9 00 00 00 00 00 00 00 00 0x0ab9a7692b70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ab9a7692b80: f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Heap left redzone: fa Freed heap region: fd Stack left redzone: f1 Stack mid redzone: f2 Stack right redzone: f3 Stack after return: f5 Stack use after scope: f8 Global redzone: f9 Global init order: f6 Poisoned by user: f7 Container overflow: fc Array cookie: ac Intra object redzone: bb ASan internal: fe Left alloca redzone: ca Right alloca redzone: cb Shadow gap: cc </quote> I'm also adding the missing "Fixes" tag and setting just .name to NULL, as doing it that way is more compact (the compiler will zero out everything else) and the table iterators look for .name being NULL as the sentinel marking the end of the table. Fixes: 0a507af ("perf tests: Add parse metric test for ipc metric") Signed-off-by: Thomas Richter <[email protected]> Reviewed-by: Sumanth Korikkar <[email protected]> Acked-by: Ian Rogers <[email protected]> Cc: Heiko Carstens <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Sven Schnelle <[email protected]> Cc: Vasily Gorbik <[email protected]> Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Krzysztof Kozlowski says: ==================== nfc: s3fwrn5: Few cleanups Changes since v2: 1. Fix dtschema ID after rename (patch 1/8). 2. Apply patch 9/9 (defconfig change). Changes since v1: 1. Rename dtschema file and add additionalProperties:false, as Rob suggested, 2. Add Marek's tested-by, 3. New patches: #4, #5, #6, #7 and #9. ==================== Signed-off-by: David S. Miller <[email protected]>
The aliases were never released causing the following leaks: Indirect leak of 1224 byte(s) in 9 object(s) allocated from: #0 0x7feefb830628 in malloc (/lib/x86_64-linux-gnu/libasan.so.5+0x107628) #1 0x56332c8f1b62 in __perf_pmu__new_alias util/pmu.c:322 #2 0x56332c8f401f in pmu_add_cpu_aliases_map util/pmu.c:778 #3 0x56332c792ce9 in __test__pmu_event_aliases tests/pmu-events.c:295 #4 0x56332c792ce9 in test_aliases tests/pmu-events.c:367 #5 0x56332c76a09b in run_test tests/builtin-test.c:410 #6 0x56332c76a09b in test_and_print tests/builtin-test.c:440 #7 0x56332c76ce69 in __cmd_test tests/builtin-test.c:695 #8 0x56332c76ce69 in cmd_test tests/builtin-test.c:807 #9 0x56332c7d2214 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #10 0x56332c6701a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #11 0x56332c6701a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #12 0x56332c6701a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #13 0x7feefb359cc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: 956a783 ("perf test: Test pmu-events aliases") Signed-off-by: Namhyung Kim <[email protected]> Reviewed-by: John Garry <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The evsel->unit borrows a pointer of pmu event or alias instead of owns a string. But tool event (duration_time) passes a result of strdup() caused a leak. It was found by ASAN during metric test: Direct leak of 210 byte(s) in 70 object(s) allocated from: #0 0x7fe366fca0b5 in strdup (/lib/x86_64-linux-gnu/libasan.so.5+0x920b5) #1 0x559fbbcc6ea3 in add_event_tool util/parse-events.c:414 #2 0x559fbbcc6ea3 in parse_events_add_tool util/parse-events.c:1414 #3 0x559fbbd8474d in parse_events_parse util/parse-events.y:439 #4 0x559fbbcc95da in parse_events__scanner util/parse-events.c:2096 #5 0x559fbbcc95da in __parse_events util/parse-events.c:2141 #6 0x559fbbc28555 in check_parse_id tests/pmu-events.c:406 #7 0x559fbbc28555 in check_parse_id tests/pmu-events.c:393 #8 0x559fbbc28555 in check_parse_cpu tests/pmu-events.c:415 #9 0x559fbbc28555 in test_parsing tests/pmu-events.c:498 #10 0x559fbbc0109b in run_test tests/builtin-test.c:410 #11 0x559fbbc0109b in test_and_print tests/builtin-test.c:440 #12 0x559fbbc03e69 in __cmd_test tests/builtin-test.c:695 #13 0x559fbbc03e69 in cmd_test tests/builtin-test.c:807 #14 0x559fbbc691f4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #15 0x559fbbb071a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #16 0x559fbbb071a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #17 0x559fbbb071a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #18 0x7fe366b68cc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: f0fbb11 ("perf stat: Implement duration_time as a proper event") Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The test_generic_metric() missed to release entries in the pctx. Asan reported following leak (and more): Direct leak of 128 byte(s) in 1 object(s) allocated from: #0 0x7f4c9396980e in calloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10780e) #1 0x55f7e748cc14 in hashmap_grow (/home/namhyung/project/linux/tools/perf/perf+0x90cc14) #2 0x55f7e748d497 in hashmap__insert (/home/namhyung/project/linux/tools/perf/perf+0x90d497) #3 0x55f7e7341667 in hashmap__set /home/namhyung/project/linux/tools/perf/util/hashmap.h:111 #4 0x55f7e7341667 in expr__add_ref util/expr.c:120 #5 0x55f7e7292436 in prepare_metric util/stat-shadow.c:783 #6 0x55f7e729556d in test_generic_metric util/stat-shadow.c:858 #7 0x55f7e712390b in compute_single tests/parse-metric.c:128 #8 0x55f7e712390b in __compute_metric tests/parse-metric.c:180 #9 0x55f7e712446d in compute_metric tests/parse-metric.c:196 #10 0x55f7e712446d in test_dcache_l2 tests/parse-metric.c:295 #11 0x55f7e712446d in test__parse_metric tests/parse-metric.c:355 #12 0x55f7e70be09b in run_test tests/builtin-test.c:410 #13 0x55f7e70be09b in test_and_print tests/builtin-test.c:440 #14 0x55f7e70c101a in __cmd_test tests/builtin-test.c:661 #15 0x55f7e70c101a in cmd_test tests/builtin-test.c:807 #16 0x55f7e7126214 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #17 0x55f7e6fc41a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #18 0x55f7e6fc41a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #19 0x55f7e6fc41a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #20 0x7f4c93492cc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: 6d432c4 ("perf tools: Add test_generic_metric function") Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The metricgroup__add_metric() can find multiple match for a metric group and it's possible to fail. Also it can fail in the middle like in resolve_metric() even for single metric. In those cases, the intermediate list and ids will be leaked like: Direct leak of 3 byte(s) in 1 object(s) allocated from: #0 0x7f4c938f40b5 in strdup (/lib/x86_64-linux-gnu/libasan.so.5+0x920b5) #1 0x55f7e71c1bef in __add_metric util/metricgroup.c:683 #2 0x55f7e71c31d0 in add_metric util/metricgroup.c:906 #3 0x55f7e71c3844 in metricgroup__add_metric util/metricgroup.c:940 #4 0x55f7e71c488d in metricgroup__add_metric_list util/metricgroup.c:993 #5 0x55f7e71c488d in parse_groups util/metricgroup.c:1045 #6 0x55f7e71c60a4 in metricgroup__parse_groups_test util/metricgroup.c:1087 #7 0x55f7e71235ae in __compute_metric tests/parse-metric.c:164 #8 0x55f7e7124650 in compute_metric tests/parse-metric.c:196 #9 0x55f7e7124650 in test_recursion_fail tests/parse-metric.c:318 #10 0x55f7e7124650 in test__parse_metric tests/parse-metric.c:356 #11 0x55f7e70be09b in run_test tests/builtin-test.c:410 #12 0x55f7e70be09b in test_and_print tests/builtin-test.c:440 #13 0x55f7e70c101a in __cmd_test tests/builtin-test.c:661 #14 0x55f7e70c101a in cmd_test tests/builtin-test.c:807 #15 0x55f7e7126214 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #16 0x55f7e6fc41a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #17 0x55f7e6fc41a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #18 0x55f7e6fc41a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #19 0x7f4c93492cc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: 83de0b7 ("perf metric: Collect referenced metrics in struct metric_ref_node") Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The following leaks were detected by ASAN: Indirect leak of 360 byte(s) in 9 object(s) allocated from: #0 0x7fecc305180e in calloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10780e) #1 0x560578f6dce5 in perf_pmu__new_format util/pmu.c:1333 #2 0x560578f752fc in perf_pmu_parse util/pmu.y:59 #3 0x560578f6a8b7 in perf_pmu__format_parse util/pmu.c:73 #4 0x560578e07045 in test__pmu tests/pmu.c:155 #5 0x560578de109b in run_test tests/builtin-test.c:410 #6 0x560578de109b in test_and_print tests/builtin-test.c:440 #7 0x560578de401a in __cmd_test tests/builtin-test.c:661 #8 0x560578de401a in cmd_test tests/builtin-test.c:807 #9 0x560578e49354 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #10 0x560578ce71a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #11 0x560578ce71a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #12 0x560578ce71a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #13 0x7fecc2b7acc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: cff7f95 ("perf tests: Move pmu tests into separate object") Signed-off-by: Namhyung Kim <[email protected]> Acked-by: Jiri Olsa <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: http://lore.kernel.org/lkml/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Ido Schimmel says: ==================== mlxsw: Refactor headroom management Petr says: On Spectrum, port buffers, also called port headroom, is where packets are stored while they are parsed and the forwarding decision is being made. For lossless traffic flows, in case shared buffer admission is not allowed, headroom is also where to put the extra traffic received before the sent PAUSE takes effect. Another aspect of the port headroom is the so called internal buffer, which is used for egress mirroring. Linux supports two DCB interfaces related to the headroom: dcbnl_setbuffer for configuration, and dcbnl_getbuffer for inspection. In order to make it possible to implement these interfaces, it is first necessary to clean up headroom handling, which is currently strewn in several places in the driver. The end goal is an architecture whereby it is possible to take a copy of the current configuration, adjust parameters, and then hand the proposed configuration over to the system to implement it. When everything works, the proposed configuration is accepted and saved. First, this centralizes the reconfiguration handling to one function, which takes care of coordinating buffer size changes and priority map changes to avoid introducing drops. Second, the fact that the configuration is all in one place makes it easy to keep a backup and handle error path rollbacks, which were previously hard to understand. Patch #1 introduces struct mlxsw_sp_hdroom, which will keep port headroom configuration. Patch #2 unifies handling of delay provision between PFC and PAUSE. From now on, delay is to be measured in bytes of extra space, and will not include MTU. PFC handler sets the delay directly from the parameter it gets through the DCB interface. For PAUSE, MLXSW_SP_PAUSE_DELAY is converted to have the same meaning. In patches #3-#5, MTU, lossiness and priorities are gradually moved over to struct mlxsw_sp_hdroom. In patches #6-#11, handling of buffer resizing and priority maps is moved from spectrum.c and spectrum_dcb.c to spectrum_buffers.c. The API is gradually adapted so that struct mlxsw_sp_hdroom becomes the main interface through which the various clients express how the headroom should be configured. Patch #12 is a small cleanup that the previous transformation made possible. In patch #13, the port init code becomes a boring client of the headroom code, instead of rolling its own thing. Patches #14 and #15 move handling of internal mirroring buffer to the new headroom code as well. Previously, this code was in the SPAN module. This patchset converts the SPAN module to another boring client of the headroom code. ==================== Signed-off-by: David S. Miller <[email protected]>
Huazhong Tan says: ==================== net: hns3: updates for -next There are some optimizations related to IO path. Change since V1: - fixes a unsuitable handling in hns3_lb_clear_tx_ring() of #6 which pointed out by Saeed Mahameed. previous version: V1: https://patchwork.ozlabs.org/project/netdev/cover/[email protected]/ ==================== Signed-off-by: David S. Miller <[email protected]>
As reported by CVE-2025-29481 [1], it is possible to corrupt a BPF ELF file such that arbitrary BPF instructions are loaded by libbpf. This can be done by setting a symbol (BPF program) section offset to a large (unsigned) number such that <section start + symbol offset> overflows and points before the section data in the memory. Consider the situation below where: - prog_start = sec_start + symbol_offset <-- size_t overflow here - prog_end = prog_start + prog_size prog_start sec_start prog_end sec_end | | | | v v v v .....................|################################|............ The CVE report in [1] also provides a corrupted BPF ELF which can be used as a reproducer: $ readelf -S crash Section Headers: [Nr] Name Type Address Offset Size EntSize Flags Link Info Align ... [ 2] uretprobe.mu[...] PROGBITS 0000000000000000 00000040 0000000000000068 0000000000000000 AX 0 0 8 $ readelf -s crash Symbol table '.symtab' contains 8 entries: Num: Value Size Type Bind Vis Ndx Name ... 6: ffffffffffffffb8 104 FUNC GLOBAL DEFAULT 2 handle_tp Here, the handle_tp prog has section offset ffffffffffffffb8, i.e. will point before the actual memory where section 2 is allocated. This is also reported by AddressSanitizer: ================================================================= ==1232==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7c7302fe0000 at pc 0x7fc3046e4b77 bp 0x7ffe64677cd0 sp 0x7ffe64677490 READ of size 104 at 0x7c7302fe0000 thread T0 #0 0x7fc3046e4b76 in memcpy (/lib64/libasan.so.8+0xe4b76) #1 0x00000040df3e in bpf_object__init_prog /src/libbpf/src/libbpf.c:856 #2 0x00000040df3e in bpf_object__add_programs /src/libbpf/src/libbpf.c:928 #3 0x00000040df3e in bpf_object__elf_collect /src/libbpf/src/libbpf.c:3930 #4 0x00000040df3e in bpf_object_open /src/libbpf/src/libbpf.c:8067 #5 0x00000040f176 in bpf_object__open_file /src/libbpf/src/libbpf.c:8090 #6 0x000000400c16 in main /poc/poc.c:8 #7 0x7fc3043d25b4 in __libc_start_call_main (/lib64/libc.so.6+0x35b4) #8 0x7fc3043d2667 in __libc_start_main@@GLIBC_2.34 (/lib64/libc.so.6+0x3667) #9 0x000000400b34 in _start (/poc/poc+0x400b34) 0x7c7302fe0000 is located 64 bytes before 104-byte region [0x7c7302fe0040,0x7c7302fe00a8) allocated by thread T0 here: #0 0x7fc3046e716b in malloc (/lib64/libasan.so.8+0xe716b) #1 0x7fc3045ee600 in __libelf_set_rawdata_wrlock (/lib64/libelf.so.1+0xb600) #2 0x7fc3045ef018 in __elf_getdata_rdlock (/lib64/libelf.so.1+0xc018) #3 0x00000040642f in elf_sec_data /src/libbpf/src/libbpf.c:3740 The problem here is that currently, libbpf only checks that the program end is within the section bounds. There used to be a check `while (sec_off < sec_sz)` in bpf_object__add_programs, however, it was removed by commit 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions"). Put the above condition back to bpf_object__init_prog to make sure that the program start is also within the bounds of the section to avoid the potential buffer overflow. [1] https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Reported-by: lmarch2 <[email protected]> Cc: [email protected] Fixes: 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions") Link: https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Link: https://www.cve.org/CVERecord?id=CVE-2025-29481 Signed-off-by: Viktor Malik <[email protected]> Reviewed-by: Shung-Hsi Yu <[email protected]>
In ThinPro, we use the convention <upstream_ver>+hp<patchlevel> for the kernel package. This does not have a dash in the name or version. This is built by editing ".version" before a build, and setting EXTRAVERSION="+hp" and KDEB_PKGVERSION make variables: echo 68 > .version make -j<n> EXTRAVERSION="+hp" bindeb-pkg KDEB_PKGVERSION=6.12.2+hp69 .deb name: linux-image-6.12.2+hp_6.12.2+hp69_amd64.deb Since commit 7d4f07d ("kbuild: deb-pkg: squash scripts/package/deb-build-option to debian/rules"), this no longer works. The deb build logic changed, even though, the commit message implies that the logic should be unmodified. Before, KBUILD_BUILD_VERSION was not set if the KDEB_PKGVERSION did not contain a dash. After the change KBUILD_BUILD_VERSION is always set to KDEB_PKGVERSION. Since this determines UTS_VERSION, the uname output to look off: (now) uname -a: version 6.12.2+hp ... kernel-patches#6.12.2+hp69 (expected) uname -a: version 6.12.2+hp ... kernel-patches#69 Update the debian/rules logic to restore the original behavior. Fixes: 7d4f07d ("kbuild: deb-pkg: squash scripts/package/deb-build-option to debian/rules") Signed-off-by: Alexandru Gagniuc <[email protected]> Reviewed-by: Nicolas Schier <[email protected]> Signed-off-by: Masahiro Yamada <[email protected]>
syzkaller triggered an oversized kvmalloc() warning. Silence it by adding __GFP_NOWARN. syzkaller log: WARNING: CPU: 7 PID: 518 at mm/util.c:665 __kvmalloc_node_noprof+0x175/0x180 CPU: 7 UID: 0 PID: 518 Comm: c_repro Not tainted 6.11.0-rc6+ #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:__kvmalloc_node_noprof+0x175/0x180 RSP: 0018:ffffc90001e67c10 EFLAGS: 00010246 RAX: 0000000000000100 RBX: 0000000000000400 RCX: ffffffff8149d46b RDX: 0000000000000000 RSI: ffff8881030fae80 RDI: 0000000000000002 RBP: 000000712c800000 R08: 0000000000000100 R09: 0000000000000000 R10: ffffc90001e67c10 R11: 0030ae0601000000 R12: 0000000000000000 R13: 0000000000000000 R14: 00000000ffffffff R15: 0000000000000000 FS: 00007fde79159740(0000) GS:ffff88813bdc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000180 CR3: 0000000105eb4005 CR4: 00000000003706b0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ib_umem_odp_get+0x1f6/0x390 mlx5_ib_reg_user_mr+0x1e8/0x450 ib_uverbs_reg_mr+0x28b/0x440 ib_uverbs_write+0x7d3/0xa30 vfs_write+0x1ac/0x6c0 ksys_write+0x134/0x170 ? __sanitizer_cov_trace_pc+0x1c/0x50 do_syscall_64+0x50/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e Fixes: 3782495 ("RDMA/odp: Use kvcalloc for the dma_list and page_list") Signed-off-by: Shay Drory <[email protected]> Link: https://patch.msgid.link/c6cb92379de668be94894f49c2cfa40e73f94d56.1742388096.git.leonro@nvidia.com Signed-off-by: Leon Romanovsky <[email protected]>
As shown in [1], it is possible to corrupt a BPF ELF file such that arbitrary BPF instructions are loaded by libbpf. This can be done by setting a symbol (BPF program) section offset to a large (unsigned) number such that <section start + symbol offset> overflows and points before the section data in the memory. Consider the situation below where: - prog_start = sec_start + symbol_offset <-- size_t overflow here - prog_end = prog_start + prog_size prog_start sec_start prog_end sec_end | | | | v v v v .....................|################################|............ The report in [1] also provides a corrupted BPF ELF which can be used as a reproducer: $ readelf -S crash Section Headers: [Nr] Name Type Address Offset Size EntSize Flags Link Info Align ... [ 2] uretprobe.mu[...] PROGBITS 0000000000000000 00000040 0000000000000068 0000000000000000 AX 0 0 8 $ readelf -s crash Symbol table '.symtab' contains 8 entries: Num: Value Size Type Bind Vis Ndx Name ... 6: ffffffffffffffb8 104 FUNC GLOBAL DEFAULT 2 handle_tp Here, the handle_tp prog has section offset ffffffffffffffb8, i.e. will point before the actual memory where section 2 is allocated. This is also reported by AddressSanitizer: ================================================================= ==1232==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7c7302fe0000 at pc 0x7fc3046e4b77 bp 0x7ffe64677cd0 sp 0x7ffe64677490 READ of size 104 at 0x7c7302fe0000 thread T0 #0 0x7fc3046e4b76 in memcpy (/lib64/libasan.so.8+0xe4b76) #1 0x00000040df3e in bpf_object__init_prog /src/libbpf/src/libbpf.c:856 #2 0x00000040df3e in bpf_object__add_programs /src/libbpf/src/libbpf.c:928 #3 0x00000040df3e in bpf_object__elf_collect /src/libbpf/src/libbpf.c:3930 #4 0x00000040df3e in bpf_object_open /src/libbpf/src/libbpf.c:8067 #5 0x00000040f176 in bpf_object__open_file /src/libbpf/src/libbpf.c:8090 #6 0x000000400c16 in main /poc/poc.c:8 #7 0x7fc3043d25b4 in __libc_start_call_main (/lib64/libc.so.6+0x35b4) #8 0x7fc3043d2667 in __libc_start_main@@GLIBC_2.34 (/lib64/libc.so.6+0x3667) #9 0x000000400b34 in _start (/poc/poc+0x400b34) 0x7c7302fe0000 is located 64 bytes before 104-byte region [0x7c7302fe0040,0x7c7302fe00a8) allocated by thread T0 here: #0 0x7fc3046e716b in malloc (/lib64/libasan.so.8+0xe716b) #1 0x7fc3045ee600 in __libelf_set_rawdata_wrlock (/lib64/libelf.so.1+0xb600) #2 0x7fc3045ef018 in __elf_getdata_rdlock (/lib64/libelf.so.1+0xc018) #3 0x00000040642f in elf_sec_data /src/libbpf/src/libbpf.c:3740 The problem here is that currently, libbpf only checks that the program end is within the section bounds. There used to be a check `while (sec_off < sec_sz)` in bpf_object__add_programs, however, it was removed by commit 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions"). Add a check for detecting the overflow of `sec_off + prog_sz` to bpf_object__init_prog to fix this issue. [1] https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Reported-by: lmarch2 <[email protected]> Link: https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Fixes: 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions") Signed-off-by: Viktor Malik <[email protected]> Reviewed-by: Shung-Hsi Yu <[email protected]>
As shown in [1], it is possible to corrupt a BPF ELF file such that arbitrary BPF instructions are loaded by libbpf. This can be done by setting a symbol (BPF program) section offset to a large (unsigned) number such that <section start + symbol offset> overflows and points before the section data in the memory. Consider the situation below where: - prog_start = sec_start + symbol_offset <-- size_t overflow here - prog_end = prog_start + prog_size prog_start sec_start prog_end sec_end | | | | v v v v .....................|################################|............ The report in [1] also provides a corrupted BPF ELF which can be used as a reproducer: $ readelf -S crash Section Headers: [Nr] Name Type Address Offset Size EntSize Flags Link Info Align ... [ 2] uretprobe.mu[...] PROGBITS 0000000000000000 00000040 0000000000000068 0000000000000000 AX 0 0 8 $ readelf -s crash Symbol table '.symtab' contains 8 entries: Num: Value Size Type Bind Vis Ndx Name ... 6: ffffffffffffffb8 104 FUNC GLOBAL DEFAULT 2 handle_tp Here, the handle_tp prog has section offset ffffffffffffffb8, i.e. will point before the actual memory where section 2 is allocated. This is also reported by AddressSanitizer: ================================================================= ==1232==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7c7302fe0000 at pc 0x7fc3046e4b77 bp 0x7ffe64677cd0 sp 0x7ffe64677490 READ of size 104 at 0x7c7302fe0000 thread T0 #0 0x7fc3046e4b76 in memcpy (/lib64/libasan.so.8+0xe4b76) #1 0x00000040df3e in bpf_object__init_prog /src/libbpf/src/libbpf.c:856 #2 0x00000040df3e in bpf_object__add_programs /src/libbpf/src/libbpf.c:928 #3 0x00000040df3e in bpf_object__elf_collect /src/libbpf/src/libbpf.c:3930 #4 0x00000040df3e in bpf_object_open /src/libbpf/src/libbpf.c:8067 #5 0x00000040f176 in bpf_object__open_file /src/libbpf/src/libbpf.c:8090 #6 0x000000400c16 in main /poc/poc.c:8 #7 0x7fc3043d25b4 in __libc_start_call_main (/lib64/libc.so.6+0x35b4) #8 0x7fc3043d2667 in __libc_start_main@@GLIBC_2.34 (/lib64/libc.so.6+0x3667) #9 0x000000400b34 in _start (/poc/poc+0x400b34) 0x7c7302fe0000 is located 64 bytes before 104-byte region [0x7c7302fe0040,0x7c7302fe00a8) allocated by thread T0 here: #0 0x7fc3046e716b in malloc (/lib64/libasan.so.8+0xe716b) #1 0x7fc3045ee600 in __libelf_set_rawdata_wrlock (/lib64/libelf.so.1+0xb600) #2 0x7fc3045ef018 in __elf_getdata_rdlock (/lib64/libelf.so.1+0xc018) #3 0x00000040642f in elf_sec_data /src/libbpf/src/libbpf.c:3740 The problem here is that currently, libbpf only checks that the program end is within the section bounds. There used to be a check `while (sec_off < sec_sz)` in bpf_object__add_programs, however, it was removed by commit 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions"). Add a check for detecting the overflow of `sec_off + prog_sz` to bpf_object__init_prog to fix this issue. [1] https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Reported-by: lmarch2 <[email protected]> Link: https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Fixes: 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions") Signed-off-by: Viktor Malik <[email protected]> Reviewed-by: Shung-Hsi Yu <[email protected]>
As shown in [1], it is possible to corrupt a BPF ELF file such that arbitrary BPF instructions are loaded by libbpf. This can be done by setting a symbol (BPF program) section offset to a large (unsigned) number such that <section start + symbol offset> overflows and points before the section data in the memory. Consider the situation below where: - prog_start = sec_start + symbol_offset <-- size_t overflow here - prog_end = prog_start + prog_size prog_start sec_start prog_end sec_end | | | | v v v v .....................|################################|............ The report in [1] also provides a corrupted BPF ELF which can be used as a reproducer: $ readelf -S crash Section Headers: [Nr] Name Type Address Offset Size EntSize Flags Link Info Align ... [ 2] uretprobe.mu[...] PROGBITS 0000000000000000 00000040 0000000000000068 0000000000000000 AX 0 0 8 $ readelf -s crash Symbol table '.symtab' contains 8 entries: Num: Value Size Type Bind Vis Ndx Name ... 6: ffffffffffffffb8 104 FUNC GLOBAL DEFAULT 2 handle_tp Here, the handle_tp prog has section offset ffffffffffffffb8, i.e. will point before the actual memory where section 2 is allocated. This is also reported by AddressSanitizer: ================================================================= ==1232==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7c7302fe0000 at pc 0x7fc3046e4b77 bp 0x7ffe64677cd0 sp 0x7ffe64677490 READ of size 104 at 0x7c7302fe0000 thread T0 #0 0x7fc3046e4b76 in memcpy (/lib64/libasan.so.8+0xe4b76) #1 0x00000040df3e in bpf_object__init_prog /src/libbpf/src/libbpf.c:856 #2 0x00000040df3e in bpf_object__add_programs /src/libbpf/src/libbpf.c:928 #3 0x00000040df3e in bpf_object__elf_collect /src/libbpf/src/libbpf.c:3930 #4 0x00000040df3e in bpf_object_open /src/libbpf/src/libbpf.c:8067 #5 0x00000040f176 in bpf_object__open_file /src/libbpf/src/libbpf.c:8090 #6 0x000000400c16 in main /poc/poc.c:8 #7 0x7fc3043d25b4 in __libc_start_call_main (/lib64/libc.so.6+0x35b4) #8 0x7fc3043d2667 in __libc_start_main@@GLIBC_2.34 (/lib64/libc.so.6+0x3667) #9 0x000000400b34 in _start (/poc/poc+0x400b34) 0x7c7302fe0000 is located 64 bytes before 104-byte region [0x7c7302fe0040,0x7c7302fe00a8) allocated by thread T0 here: #0 0x7fc3046e716b in malloc (/lib64/libasan.so.8+0xe716b) #1 0x7fc3045ee600 in __libelf_set_rawdata_wrlock (/lib64/libelf.so.1+0xb600) #2 0x7fc3045ef018 in __elf_getdata_rdlock (/lib64/libelf.so.1+0xc018) #3 0x00000040642f in elf_sec_data /src/libbpf/src/libbpf.c:3740 The problem here is that currently, libbpf only checks that the program end is within the section bounds. There used to be a check `while (sec_off < sec_sz)` in bpf_object__add_programs, however, it was removed by commit 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions"). Add a check for detecting the overflow of `sec_off + prog_sz` to bpf_object__init_prog to fix this issue. [1] https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Reported-by: lmarch2 <[email protected]> Link: https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Fixes: 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions") Signed-off-by: Viktor Malik <[email protected]> Reviewed-by: Shung-Hsi Yu <[email protected]>
As shown in [1], it is possible to corrupt a BPF ELF file such that arbitrary BPF instructions are loaded by libbpf. This can be done by setting a symbol (BPF program) section offset to a large (unsigned) number such that <section start + symbol offset> overflows and points before the section data in the memory. Consider the situation below where: - prog_start = sec_start + symbol_offset <-- size_t overflow here - prog_end = prog_start + prog_size prog_start sec_start prog_end sec_end | | | | v v v v .....................|################################|............ The report in [1] also provides a corrupted BPF ELF which can be used as a reproducer: $ readelf -S crash Section Headers: [Nr] Name Type Address Offset Size EntSize Flags Link Info Align ... [ 2] uretprobe.mu[...] PROGBITS 0000000000000000 00000040 0000000000000068 0000000000000000 AX 0 0 8 $ readelf -s crash Symbol table '.symtab' contains 8 entries: Num: Value Size Type Bind Vis Ndx Name ... 6: ffffffffffffffb8 104 FUNC GLOBAL DEFAULT 2 handle_tp Here, the handle_tp prog has section offset ffffffffffffffb8, i.e. will point before the actual memory where section 2 is allocated. This is also reported by AddressSanitizer: ================================================================= ==1232==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7c7302fe0000 at pc 0x7fc3046e4b77 bp 0x7ffe64677cd0 sp 0x7ffe64677490 READ of size 104 at 0x7c7302fe0000 thread T0 #0 0x7fc3046e4b76 in memcpy (/lib64/libasan.so.8+0xe4b76) #1 0x00000040df3e in bpf_object__init_prog /src/libbpf/src/libbpf.c:856 #2 0x00000040df3e in bpf_object__add_programs /src/libbpf/src/libbpf.c:928 #3 0x00000040df3e in bpf_object__elf_collect /src/libbpf/src/libbpf.c:3930 #4 0x00000040df3e in bpf_object_open /src/libbpf/src/libbpf.c:8067 #5 0x00000040f176 in bpf_object__open_file /src/libbpf/src/libbpf.c:8090 #6 0x000000400c16 in main /poc/poc.c:8 #7 0x7fc3043d25b4 in __libc_start_call_main (/lib64/libc.so.6+0x35b4) #8 0x7fc3043d2667 in __libc_start_main@@GLIBC_2.34 (/lib64/libc.so.6+0x3667) #9 0x000000400b34 in _start (/poc/poc+0x400b34) 0x7c7302fe0000 is located 64 bytes before 104-byte region [0x7c7302fe0040,0x7c7302fe00a8) allocated by thread T0 here: #0 0x7fc3046e716b in malloc (/lib64/libasan.so.8+0xe716b) #1 0x7fc3045ee600 in __libelf_set_rawdata_wrlock (/lib64/libelf.so.1+0xb600) #2 0x7fc3045ef018 in __elf_getdata_rdlock (/lib64/libelf.so.1+0xc018) #3 0x00000040642f in elf_sec_data /src/libbpf/src/libbpf.c:3740 The problem here is that currently, libbpf only checks that the program end is within the section bounds. There used to be a check `while (sec_off < sec_sz)` in bpf_object__add_programs, however, it was removed by commit 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions"). Add a check for detecting the overflow of `sec_off + prog_sz` to bpf_object__init_prog to fix this issue. [1] https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Fixes: 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions") Reported-by: lmarch2 <[email protected]> Signed-off-by: Viktor Malik <[email protected]> Signed-off-by: Andrii Nakryiko <[email protected]> Reviewed-by: Shung-Hsi Yu <[email protected]> Link: https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Link: https://lore.kernel.org/bpf/[email protected]
Commit 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") introduces the netdev lock to xdp_set_features_flag(). The change includes a _locked version of the method, as it is possible for a driver to have already acquired the netdev lock before calling this helper. However, the same applies to xdp_features_(set|clear)_redirect_flags(), which ends up calling the unlocked version of xdp_set_features_flags() leading to deadlocks in GVE, which grabs the netdev lock as part of its suspend, reset, and shutdown processes: [ 833.265543] WARNING: possible recursive locking detected [ 833.270949] 6.15.0-rc1 kernel-patches#6 Tainted: G E [ 833.276271] -------------------------------------------- [ 833.281681] systemd-shutdow/1 is trying to acquire lock: [ 833.287090] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: xdp_set_features_flag+0x29/0x90 [ 833.295470] [ 833.295470] but task is already holding lock: [ 833.301400] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] [ 833.309508] [ 833.309508] other info that might help us debug this: [ 833.316130] Possible unsafe locking scenario: [ 833.316130] [ 833.322142] CPU0 [ 833.324681] ---- [ 833.327220] lock(&dev->lock); [ 833.330455] lock(&dev->lock); [ 833.333689] [ 833.333689] *** DEADLOCK *** [ 833.333689] [ 833.339701] May be due to missing lock nesting notation [ 833.339701] [ 833.346582] 5 locks held by systemd-shutdow/1: [ 833.351205] #0: ffffffffa9c89130 (system_transition_mutex){+.+.}-{4:4}, at: __se_sys_reboot+0xe6/0x210 [ 833.360695] kernel-patches#1: ffff93b399e5c1b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xb4/0x1f0 [ 833.369144] kernel-patches#2: ffff949d19a471b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xc2/0x1f0 [ 833.377603] kernel-patches#3: ffffffffa9eca050 (rtnl_mutex){+.+.}-{4:4}, at: gve_shutdown+0x33/0x90 [gve] [ 833.386138] kernel-patches#4: ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] Introduce xdp_features_(set|clear)_redirect_target_locked() versions which assume that the netdev lock has already been acquired before setting the XDP feature flag and update GVE to use the locked version. Cc: [email protected] Fixes: 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") Tested-by: Mina Almasry <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Reviewed-by: Harshitha Ramamurthy <[email protected]> Signed-off-by: Joshua Washington <[email protected]> Signed-off-by: NipaLocal <nipa@local>
Commit 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") introduces the netdev lock to xdp_set_features_flag(). The change includes a _locked version of the method, as it is possible for a driver to have already acquired the netdev lock before calling this helper. However, the same applies to xdp_features_(set|clear)_redirect_flags(), which ends up calling the unlocked version of xdp_set_features_flags() leading to deadlocks in GVE, which grabs the netdev lock as part of its suspend, reset, and shutdown processes: [ 833.265543] WARNING: possible recursive locking detected [ 833.270949] 6.15.0-rc1 kernel-patches#6 Tainted: G E [ 833.276271] -------------------------------------------- [ 833.281681] systemd-shutdow/1 is trying to acquire lock: [ 833.287090] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: xdp_set_features_flag+0x29/0x90 [ 833.295470] [ 833.295470] but task is already holding lock: [ 833.301400] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] [ 833.309508] [ 833.309508] other info that might help us debug this: [ 833.316130] Possible unsafe locking scenario: [ 833.316130] [ 833.322142] CPU0 [ 833.324681] ---- [ 833.327220] lock(&dev->lock); [ 833.330455] lock(&dev->lock); [ 833.333689] [ 833.333689] *** DEADLOCK *** [ 833.333689] [ 833.339701] May be due to missing lock nesting notation [ 833.339701] [ 833.346582] 5 locks held by systemd-shutdow/1: [ 833.351205] #0: ffffffffa9c89130 (system_transition_mutex){+.+.}-{4:4}, at: __se_sys_reboot+0xe6/0x210 [ 833.360695] kernel-patches#1: ffff93b399e5c1b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xb4/0x1f0 [ 833.369144] kernel-patches#2: ffff949d19a471b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xc2/0x1f0 [ 833.377603] kernel-patches#3: ffffffffa9eca050 (rtnl_mutex){+.+.}-{4:4}, at: gve_shutdown+0x33/0x90 [gve] [ 833.386138] kernel-patches#4: ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] Introduce xdp_features_(set|clear)_redirect_target_locked() versions which assume that the netdev lock has already been acquired before setting the XDP feature flag and update GVE to use the locked version. Cc: [email protected] Fixes: 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") Tested-by: Mina Almasry <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Reviewed-by: Harshitha Ramamurthy <[email protected]> Signed-off-by: Joshua Washington <[email protected]> Signed-off-by: NipaLocal <nipa@local>
Commit 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") introduces the netdev lock to xdp_set_features_flag(). The change includes a _locked version of the method, as it is possible for a driver to have already acquired the netdev lock before calling this helper. However, the same applies to xdp_features_(set|clear)_redirect_flags(), which ends up calling the unlocked version of xdp_set_features_flags() leading to deadlocks in GVE, which grabs the netdev lock as part of its suspend, reset, and shutdown processes: [ 833.265543] WARNING: possible recursive locking detected [ 833.270949] 6.15.0-rc1 kernel-patches#6 Tainted: G E [ 833.276271] -------------------------------------------- [ 833.281681] systemd-shutdow/1 is trying to acquire lock: [ 833.287090] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: xdp_set_features_flag+0x29/0x90 [ 833.295470] [ 833.295470] but task is already holding lock: [ 833.301400] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] [ 833.309508] [ 833.309508] other info that might help us debug this: [ 833.316130] Possible unsafe locking scenario: [ 833.316130] [ 833.322142] CPU0 [ 833.324681] ---- [ 833.327220] lock(&dev->lock); [ 833.330455] lock(&dev->lock); [ 833.333689] [ 833.333689] *** DEADLOCK *** [ 833.333689] [ 833.339701] May be due to missing lock nesting notation [ 833.339701] [ 833.346582] 5 locks held by systemd-shutdow/1: [ 833.351205] #0: ffffffffa9c89130 (system_transition_mutex){+.+.}-{4:4}, at: __se_sys_reboot+0xe6/0x210 [ 833.360695] kernel-patches#1: ffff93b399e5c1b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xb4/0x1f0 [ 833.369144] kernel-patches#2: ffff949d19a471b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xc2/0x1f0 [ 833.377603] kernel-patches#3: ffffffffa9eca050 (rtnl_mutex){+.+.}-{4:4}, at: gve_shutdown+0x33/0x90 [gve] [ 833.386138] kernel-patches#4: ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] Introduce xdp_features_(set|clear)_redirect_target_locked() versions which assume that the netdev lock has already been acquired before setting the XDP feature flag and update GVE to use the locked version. Cc: [email protected] Fixes: 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") Tested-by: Mina Almasry <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Reviewed-by: Harshitha Ramamurthy <[email protected]> Signed-off-by: Joshua Washington <[email protected]> Signed-off-by: NipaLocal <nipa@local>
Ido Schimmel says: ==================== vxlan: Convert FDB table to rhashtable The VXLAN driver currently stores FDB entries in a hash table with a fixed number of buckets (256), resulting in reduced performance as the number of entries grows. This patchset solves the issue by converting the driver to use rhashtable which maintains a more or less constant performance regardless of the number of entries. Measured transmitted packets per second using a single pktgen thread with varying number of entries when the transmitted packet always hits the default entry (worst case): Number of entries | Improvement ------------------|------------ 1k | +1.12% 4k | +9.22% 16k | +55% 64k | +585% 256k | +2460% The first patches are preparations for the conversion in the last patch. Specifically, the series is structured as follows: Patch kernel-patches#1 adds RCU read-side critical sections in the Tx path when accessing FDB entries. Targeting at net-next as I am not aware of any issues due to this omission despite the code being structured that way for a long time. Without it, traces will be generated when converting FDB lookup to rhashtable_lookup(). Patch kernel-patches#2-kernel-patches#5 simplify the creation of the default FDB entry (all-zeroes). Current code assumes that insertion into the hash table cannot fail, which will no longer be true with rhashtable. Patches kernel-patches#6-kernel-patches#10 add FDB entries to a linked list for entry traversal instead of traversing over them using the fixed size hash table which is removed in the last patch. Patches kernel-patches#11-kernel-patches#12 add wrappers for FDB lookup that make it clear when each should be used along with lockdep annotations. Needed as a preparation for rhashtable_lookup() that must be called from an RCU read-side critical section. Patch kernel-patches#13 treats dst cache initialization errors as non-fatal. See more info in the commit message. The current code happens to work because insertion into the fixed size hash table is slow enough for the per-CPU allocator to be able to create new chunks of per-CPU memory. Patch kernel-patches#14 adds an FDB key structure that includes the MAC address and source VNI. To be used as rhashtable key. Patch kernel-patches#15 does the conversion to rhashtable. ==================== Link: https://patch.msgid.link/[email protected] Signed-off-by: Paolo Abeni <[email protected]>
Commit 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") introduces the netdev lock to xdp_set_features_flag(). The change includes a _locked version of the method, as it is possible for a driver to have already acquired the netdev lock before calling this helper. However, the same applies to xdp_features_(set|clear)_redirect_flags(), which ends up calling the unlocked version of xdp_set_features_flags() leading to deadlocks in GVE, which grabs the netdev lock as part of its suspend, reset, and shutdown processes: [ 833.265543] WARNING: possible recursive locking detected [ 833.270949] 6.15.0-rc1 kernel-patches#6 Tainted: G E [ 833.276271] -------------------------------------------- [ 833.281681] systemd-shutdow/1 is trying to acquire lock: [ 833.287090] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: xdp_set_features_flag+0x29/0x90 [ 833.295470] [ 833.295470] but task is already holding lock: [ 833.301400] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] [ 833.309508] [ 833.309508] other info that might help us debug this: [ 833.316130] Possible unsafe locking scenario: [ 833.316130] [ 833.322142] CPU0 [ 833.324681] ---- [ 833.327220] lock(&dev->lock); [ 833.330455] lock(&dev->lock); [ 833.333689] [ 833.333689] *** DEADLOCK *** [ 833.333689] [ 833.339701] May be due to missing lock nesting notation [ 833.339701] [ 833.346582] 5 locks held by systemd-shutdow/1: [ 833.351205] #0: ffffffffa9c89130 (system_transition_mutex){+.+.}-{4:4}, at: __se_sys_reboot+0xe6/0x210 [ 833.360695] kernel-patches#1: ffff93b399e5c1b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xb4/0x1f0 [ 833.369144] kernel-patches#2: ffff949d19a471b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xc2/0x1f0 [ 833.377603] kernel-patches#3: ffffffffa9eca050 (rtnl_mutex){+.+.}-{4:4}, at: gve_shutdown+0x33/0x90 [gve] [ 833.386138] kernel-patches#4: ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] Introduce xdp_features_(set|clear)_redirect_target_locked() versions which assume that the netdev lock has already been acquired before setting the XDP feature flag and update GVE to use the locked version. Cc: [email protected] Fixes: 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") Tested-by: Mina Almasry <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Reviewed-by: Harshitha Ramamurthy <[email protected]> Signed-off-by: Joshua Washington <[email protected]> Signed-off-by: NipaLocal <nipa@local>
Commit 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") introduces the netdev lock to xdp_set_features_flag(). The change includes a _locked version of the method, as it is possible for a driver to have already acquired the netdev lock before calling this helper. However, the same applies to xdp_features_(set|clear)_redirect_flags(), which ends up calling the unlocked version of xdp_set_features_flags() leading to deadlocks in GVE, which grabs the netdev lock as part of its suspend, reset, and shutdown processes: [ 833.265543] WARNING: possible recursive locking detected [ 833.270949] 6.15.0-rc1 kernel-patches#6 Tainted: G E [ 833.276271] -------------------------------------------- [ 833.281681] systemd-shutdow/1 is trying to acquire lock: [ 833.287090] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: xdp_set_features_flag+0x29/0x90 [ 833.295470] [ 833.295470] but task is already holding lock: [ 833.301400] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] [ 833.309508] [ 833.309508] other info that might help us debug this: [ 833.316130] Possible unsafe locking scenario: [ 833.316130] [ 833.322142] CPU0 [ 833.324681] ---- [ 833.327220] lock(&dev->lock); [ 833.330455] lock(&dev->lock); [ 833.333689] [ 833.333689] *** DEADLOCK *** [ 833.333689] [ 833.339701] May be due to missing lock nesting notation [ 833.339701] [ 833.346582] 5 locks held by systemd-shutdow/1: [ 833.351205] #0: ffffffffa9c89130 (system_transition_mutex){+.+.}-{4:4}, at: __se_sys_reboot+0xe6/0x210 [ 833.360695] kernel-patches#1: ffff93b399e5c1b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xb4/0x1f0 [ 833.369144] kernel-patches#2: ffff949d19a471b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xc2/0x1f0 [ 833.377603] kernel-patches#3: ffffffffa9eca050 (rtnl_mutex){+.+.}-{4:4}, at: gve_shutdown+0x33/0x90 [gve] [ 833.386138] kernel-patches#4: ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] Introduce xdp_features_(set|clear)_redirect_target_locked() versions which assume that the netdev lock has already been acquired before setting the XDP feature flag and update GVE to use the locked version. Cc: [email protected] Fixes: 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") Tested-by: Mina Almasry <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Reviewed-by: Harshitha Ramamurthy <[email protected]> Signed-off-by: Joshua Washington <[email protected]> Signed-off-by: NipaLocal <nipa@local>
Commit 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") introduces the netdev lock to xdp_set_features_flag(). The change includes a _locked version of the method, as it is possible for a driver to have already acquired the netdev lock before calling this helper. However, the same applies to xdp_features_(set|clear)_redirect_flags(), which ends up calling the unlocked version of xdp_set_features_flags() leading to deadlocks in GVE, which grabs the netdev lock as part of its suspend, reset, and shutdown processes: [ 833.265543] WARNING: possible recursive locking detected [ 833.270949] 6.15.0-rc1 kernel-patches#6 Tainted: G E [ 833.276271] -------------------------------------------- [ 833.281681] systemd-shutdow/1 is trying to acquire lock: [ 833.287090] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: xdp_set_features_flag+0x29/0x90 [ 833.295470] [ 833.295470] but task is already holding lock: [ 833.301400] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] [ 833.309508] [ 833.309508] other info that might help us debug this: [ 833.316130] Possible unsafe locking scenario: [ 833.316130] [ 833.322142] CPU0 [ 833.324681] ---- [ 833.327220] lock(&dev->lock); [ 833.330455] lock(&dev->lock); [ 833.333689] [ 833.333689] *** DEADLOCK *** [ 833.333689] [ 833.339701] May be due to missing lock nesting notation [ 833.339701] [ 833.346582] 5 locks held by systemd-shutdow/1: [ 833.351205] #0: ffffffffa9c89130 (system_transition_mutex){+.+.}-{4:4}, at: __se_sys_reboot+0xe6/0x210 [ 833.360695] kernel-patches#1: ffff93b399e5c1b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xb4/0x1f0 [ 833.369144] kernel-patches#2: ffff949d19a471b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xc2/0x1f0 [ 833.377603] kernel-patches#3: ffffffffa9eca050 (rtnl_mutex){+.+.}-{4:4}, at: gve_shutdown+0x33/0x90 [gve] [ 833.386138] kernel-patches#4: ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] Introduce xdp_features_(set|clear)_redirect_target_locked() versions which assume that the netdev lock has already been acquired before setting the XDP feature flag and update GVE to use the locked version. Cc: [email protected] Fixes: 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") Tested-by: Mina Almasry <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Reviewed-by: Harshitha Ramamurthy <[email protected]> Signed-off-by: Joshua Washington <[email protected]> Acked-by: Stanislav Fomichev <[email protected]> Signed-off-by: NipaLocal <nipa@local>
Commit 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") introduces the netdev lock to xdp_set_features_flag(). The change includes a _locked version of the method, as it is possible for a driver to have already acquired the netdev lock before calling this helper. However, the same applies to xdp_features_(set|clear)_redirect_flags(), which ends up calling the unlocked version of xdp_set_features_flags() leading to deadlocks in GVE, which grabs the netdev lock as part of its suspend, reset, and shutdown processes: [ 833.265543] WARNING: possible recursive locking detected [ 833.270949] 6.15.0-rc1 kernel-patches#6 Tainted: G E [ 833.276271] -------------------------------------------- [ 833.281681] systemd-shutdow/1 is trying to acquire lock: [ 833.287090] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: xdp_set_features_flag+0x29/0x90 [ 833.295470] [ 833.295470] but task is already holding lock: [ 833.301400] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] [ 833.309508] [ 833.309508] other info that might help us debug this: [ 833.316130] Possible unsafe locking scenario: [ 833.316130] [ 833.322142] CPU0 [ 833.324681] ---- [ 833.327220] lock(&dev->lock); [ 833.330455] lock(&dev->lock); [ 833.333689] [ 833.333689] *** DEADLOCK *** [ 833.333689] [ 833.339701] May be due to missing lock nesting notation [ 833.339701] [ 833.346582] 5 locks held by systemd-shutdow/1: [ 833.351205] #0: ffffffffa9c89130 (system_transition_mutex){+.+.}-{4:4}, at: __se_sys_reboot+0xe6/0x210 [ 833.360695] kernel-patches#1: ffff93b399e5c1b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xb4/0x1f0 [ 833.369144] kernel-patches#2: ffff949d19a471b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xc2/0x1f0 [ 833.377603] kernel-patches#3: ffffffffa9eca050 (rtnl_mutex){+.+.}-{4:4}, at: gve_shutdown+0x33/0x90 [gve] [ 833.386138] kernel-patches#4: ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] Introduce xdp_features_(set|clear)_redirect_target_locked() versions which assume that the netdev lock has already been acquired before setting the XDP feature flag and update GVE to use the locked version. Cc: [email protected] Fixes: 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") Tested-by: Mina Almasry <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Reviewed-by: Harshitha Ramamurthy <[email protected]> Signed-off-by: Joshua Washington <[email protected]> Acked-by: Stanislav Fomichev <[email protected]> Signed-off-by: NipaLocal <nipa@local>
Commit 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") introduces the netdev lock to xdp_set_features_flag(). The change includes a _locked version of the method, as it is possible for a driver to have already acquired the netdev lock before calling this helper. However, the same applies to xdp_features_(set|clear)_redirect_flags(), which ends up calling the unlocked version of xdp_set_features_flags() leading to deadlocks in GVE, which grabs the netdev lock as part of its suspend, reset, and shutdown processes: [ 833.265543] WARNING: possible recursive locking detected [ 833.270949] 6.15.0-rc1 kernel-patches#6 Tainted: G E [ 833.276271] -------------------------------------------- [ 833.281681] systemd-shutdow/1 is trying to acquire lock: [ 833.287090] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: xdp_set_features_flag+0x29/0x90 [ 833.295470] [ 833.295470] but task is already holding lock: [ 833.301400] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] [ 833.309508] [ 833.309508] other info that might help us debug this: [ 833.316130] Possible unsafe locking scenario: [ 833.316130] [ 833.322142] CPU0 [ 833.324681] ---- [ 833.327220] lock(&dev->lock); [ 833.330455] lock(&dev->lock); [ 833.333689] [ 833.333689] *** DEADLOCK *** [ 833.333689] [ 833.339701] May be due to missing lock nesting notation [ 833.339701] [ 833.346582] 5 locks held by systemd-shutdow/1: [ 833.351205] #0: ffffffffa9c89130 (system_transition_mutex){+.+.}-{4:4}, at: __se_sys_reboot+0xe6/0x210 [ 833.360695] kernel-patches#1: ffff93b399e5c1b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xb4/0x1f0 [ 833.369144] kernel-patches#2: ffff949d19a471b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xc2/0x1f0 [ 833.377603] kernel-patches#3: ffffffffa9eca050 (rtnl_mutex){+.+.}-{4:4}, at: gve_shutdown+0x33/0x90 [gve] [ 833.386138] kernel-patches#4: ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] Introduce xdp_features_(set|clear)_redirect_target_locked() versions which assume that the netdev lock has already been acquired before setting the XDP feature flag and update GVE to use the locked version. Cc: [email protected] Fixes: 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") Tested-by: Mina Almasry <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Reviewed-by: Harshitha Ramamurthy <[email protected]> Signed-off-by: Joshua Washington <[email protected]> Acked-by: Stanislav Fomichev <[email protected]> Acked-by: Martin KaFai Lau <[email protected]> Signed-off-by: NipaLocal <nipa@local>
Commit 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") introduces the netdev lock to xdp_set_features_flag(). The change includes a _locked version of the method, as it is possible for a driver to have already acquired the netdev lock before calling this helper. However, the same applies to xdp_features_(set|clear)_redirect_flags(), which ends up calling the unlocked version of xdp_set_features_flags() leading to deadlocks in GVE, which grabs the netdev lock as part of its suspend, reset, and shutdown processes: [ 833.265543] WARNING: possible recursive locking detected [ 833.270949] 6.15.0-rc1 kernel-patches#6 Tainted: G E [ 833.276271] -------------------------------------------- [ 833.281681] systemd-shutdow/1 is trying to acquire lock: [ 833.287090] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: xdp_set_features_flag+0x29/0x90 [ 833.295470] [ 833.295470] but task is already holding lock: [ 833.301400] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] [ 833.309508] [ 833.309508] other info that might help us debug this: [ 833.316130] Possible unsafe locking scenario: [ 833.316130] [ 833.322142] CPU0 [ 833.324681] ---- [ 833.327220] lock(&dev->lock); [ 833.330455] lock(&dev->lock); [ 833.333689] [ 833.333689] *** DEADLOCK *** [ 833.333689] [ 833.339701] May be due to missing lock nesting notation [ 833.339701] [ 833.346582] 5 locks held by systemd-shutdow/1: [ 833.351205] #0: ffffffffa9c89130 (system_transition_mutex){+.+.}-{4:4}, at: __se_sys_reboot+0xe6/0x210 [ 833.360695] kernel-patches#1: ffff93b399e5c1b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xb4/0x1f0 [ 833.369144] kernel-patches#2: ffff949d19a471b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xc2/0x1f0 [ 833.377603] kernel-patches#3: ffffffffa9eca050 (rtnl_mutex){+.+.}-{4:4}, at: gve_shutdown+0x33/0x90 [gve] [ 833.386138] kernel-patches#4: ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] Introduce xdp_features_(set|clear)_redirect_target_locked() versions which assume that the netdev lock has already been acquired before setting the XDP feature flag and update GVE to use the locked version. Cc: [email protected] Fixes: 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") Tested-by: Mina Almasry <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Reviewed-by: Harshitha Ramamurthy <[email protected]> Signed-off-by: Joshua Washington <[email protected]> Acked-by: Stanislav Fomichev <[email protected]> Acked-by: Martin KaFai Lau <[email protected]> Signed-off-by: NipaLocal <nipa@local>
Commit 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") introduces the netdev lock to xdp_set_features_flag(). The change includes a _locked version of the method, as it is possible for a driver to have already acquired the netdev lock before calling this helper. However, the same applies to xdp_features_(set|clear)_redirect_flags(), which ends up calling the unlocked version of xdp_set_features_flags() leading to deadlocks in GVE, which grabs the netdev lock as part of its suspend, reset, and shutdown processes: [ 833.265543] WARNING: possible recursive locking detected [ 833.270949] 6.15.0-rc1 kernel-patches#6 Tainted: G E [ 833.276271] -------------------------------------------- [ 833.281681] systemd-shutdow/1 is trying to acquire lock: [ 833.287090] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: xdp_set_features_flag+0x29/0x90 [ 833.295470] [ 833.295470] but task is already holding lock: [ 833.301400] ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] [ 833.309508] [ 833.309508] other info that might help us debug this: [ 833.316130] Possible unsafe locking scenario: [ 833.316130] [ 833.322142] CPU0 [ 833.324681] ---- [ 833.327220] lock(&dev->lock); [ 833.330455] lock(&dev->lock); [ 833.333689] [ 833.333689] *** DEADLOCK *** [ 833.333689] [ 833.339701] May be due to missing lock nesting notation [ 833.339701] [ 833.346582] 5 locks held by systemd-shutdow/1: [ 833.351205] #0: ffffffffa9c89130 (system_transition_mutex){+.+.}-{4:4}, at: __se_sys_reboot+0xe6/0x210 [ 833.360695] kernel-patches#1: ffff93b399e5c1b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xb4/0x1f0 [ 833.369144] kernel-patches#2: ffff949d19a471b8 (&dev->mutex){....}-{4:4}, at: device_shutdown+0xc2/0x1f0 [ 833.377603] kernel-patches#3: ffffffffa9eca050 (rtnl_mutex){+.+.}-{4:4}, at: gve_shutdown+0x33/0x90 [gve] [ 833.386138] kernel-patches#4: ffff949d2b148c68 (&dev->lock){+.+.}-{4:4}, at: gve_shutdown+0x44/0x90 [gve] Introduce xdp_features_(set|clear)_redirect_target_locked() versions which assume that the netdev lock has already been acquired before setting the XDP feature flag and update GVE to use the locked version. Fixes: 03df156 ("xdp: double protect netdev->xdp_flags with netdev->lock") Tested-by: Mina Almasry <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Reviewed-by: Harshitha Ramamurthy <[email protected]> Signed-off-by: Joshua Washington <[email protected]> Acked-by: Stanislav Fomichev <[email protected]> Acked-by: Martin KaFai Lau <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
The platform profile driver is loaded even on platforms that do not have ACPI enabled. The initialization of the sysfs entries was recently moved from platform_profile_register() to the module init call, and those entries need acpi_kobj to be initialized which is not the case when ACPI is disabled. This results in the following warning: WARNING: CPU: 5 PID: 1 at fs/sysfs/group.c:131 internal_create_group+0xa22/0xdd8 Modules linked in: CPU: 5 UID: 0 PID: 1 Comm: swapper/0 Tainted: G W 6.15.0-rc7-dirty #6 PREEMPT Tainted: [W]=WARN Hardware name: riscv-virtio,qemu (DT) epc : internal_create_group+0xa22/0xdd8 ra : internal_create_group+0xa22/0xdd8 Call Trace: internal_create_group+0xa22/0xdd8 sysfs_create_group+0x22/0x2e platform_profile_init+0x74/0xb2 do_one_initcall+0x198/0xa9e kernel_init_freeable+0x6d8/0x780 kernel_init+0x28/0x24c ret_from_fork+0xe/0x18 Fix this by checking if ACPI is enabled before trying to create sysfs entries. Fixes: 77be5ca ("ACPI: platform_profile: Create class for ACPI platform profile") Signed-off-by: Alexandre Ghiti <[email protected]> Reviewed-by: Arnd Bergmann <[email protected]> Reviewed-by: Mark Pearson <[email protected]> Link: https://patch.msgid.link/[email protected] [ rjw: Subject and changelog edits ] Signed-off-by: Rafael J. Wysocki <[email protected]>
Despite the fact that several lockdep-related checks are skipped when calling trylock* versions of the locking primitives, for example mutex_trylock, each time the mutex is acquired, a held_lock is still placed onto the lockdep stack by __lock_acquire() which is called regardless of whether the trylock* or regular locking API was used. This means that if the caller successfully acquires more than MAX_LOCK_DEPTH locks of the same class, even when using mutex_trylock, lockdep will still complain that the maximum depth of the held lock stack has been reached and disable itself. For example, the following error currently occurs in the ARM version of KVM, once the code tries to lock all vCPUs of a VM configured with more than MAX_LOCK_DEPTH vCPUs, a situation that can easily happen on modern systems, where having more than 48 CPUs is common, and it's also common to run VMs that have vCPU counts approaching that number: [ 328.171264] BUG: MAX_LOCK_DEPTH too low! [ 328.175227] turning off the locking correctness validator. [ 328.180726] Please attach the output of /proc/lock_stat to the bug report [ 328.187531] depth: 48 max: 48! [ 328.190678] 48 locks held by qemu-kvm/11664: [ 328.194957] #0: ffff800086de5ba0 (&kvm->lock){+.+.}-{3:3}, at: kvm_ioctl_create_device+0x174/0x5b0 [ 328.204048] #1: ffff0800e78800b8 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 [ 328.212521] #2: ffff07ffeee51e98 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 [ 328.220991] #3: ffff0800dc7d80b8 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 [ 328.229463] #4: ffff07ffe0c980b8 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 [ 328.237934] #5: ffff0800a3883c78 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 [ 328.246405] #6: ffff07fffbe480b8 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 Luckily, in all instances that require locking all vCPUs, the 'kvm->lock' is taken a priori, and that fact makes it possible to use the little known feature of lockdep, called a 'nest_lock', to avoid this warning and subsequent lockdep self-disablement. The action of 'nested lock' being provided to lockdep's lock_acquire(), causes the lockdep to detect that the top of the held lock stack contains a lock of the same class and then increment its reference counter instead of pushing a new held_lock item onto that stack. See __lock_acquire for more information. Signed-off-by: Maxim Levitsky <[email protected]> Acked-by: Peter Zijlstra (Intel) <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
Use kvm_trylock_all_vcpus instead of a custom implementation when locking all vCPUs of a VM, to avoid triggering a lockdep warning, in the case in which the VM is configured to have more than MAX_LOCK_DEPTH vCPUs. This fixes the following false lockdep warning: [ 328.171264] BUG: MAX_LOCK_DEPTH too low! [ 328.175227] turning off the locking correctness validator. [ 328.180726] Please attach the output of /proc/lock_stat to the bug report [ 328.187531] depth: 48 max: 48! [ 328.190678] 48 locks held by qemu-kvm/11664: [ 328.194957] #0: ffff800086de5ba0 (&kvm->lock){+.+.}-{3:3}, at: kvm_ioctl_create_device+0x174/0x5b0 [ 328.204048] #1: ffff0800e78800b8 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 [ 328.212521] #2: ffff07ffeee51e98 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 [ 328.220991] #3: ffff0800dc7d80b8 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 [ 328.229463] #4: ffff07ffe0c980b8 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 [ 328.237934] #5: ffff0800a3883c78 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 [ 328.246405] #6: ffff07fffbe480b8 (&vcpu->mutex){+.+.}-{3:3}, at: lock_all_vcpus+0x16c/0x2a0 Suggested-by: Paolo Bonzini <[email protected]> Signed-off-by: Maxim Levitsky <[email protected]> Acked-by: Marc Zyngier <[email protected]> Acked-by: Peter Zijlstra (Intel) <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
Subbaraya Sundeep says: ==================== CN20K silicon with mbox support CN20K is the next generation silicon in the Octeon series with various improvements and new features. Along with other changes the mailbox communication mechanism between RVU (Resource virtualization Unit) SRIOV PFs/VFs with Admin function (AF) has also gone through some changes. Some of those changes are - Separate IRQs for mbox request and response/ack. - Configurable mbox size, default being 64KB. - Ability for VFs to communicate with RVU AF instead of going through parent SRIOV PF. Due to more memory requirement due to configurable mbox size, mbox memory will now have to be allocated by - AF (PF0) for communicating with other PFs and all VFs in the system. - PF for communicating with it's child VFs. On previous silicons mbox memory was reserved and configured by firmware. This patch series add basic mbox support for AF (PF0) <=> PFs and PF <=> VFs. AF <=> VFs communication and variable mbox size support will come in later. Patch kernel-patches#1 Supported co-existance of bit encoding PFs and VFs in 16-bit hardware pcifunc format between CN20K silicon and older octeon series. Also exported PF,VF masks and shifts present in mailbox module to all other modules. Patch kernel-patches#2 Added basic mbox operation APIs and structures to support both CN20K and previous version of silicons. Patch kernel-patches#3 This patch adds support for basic mbox infrastructure implementation for CN20K silicon in AF perspective. There are few updates w.r.t MBOX ACK interrupt and offsets in CN20k. Patch kernel-patches#4 Added mbox implementation between NIC PF and AF for CN20K. Patch kernel-patches#5 Added mbox communication support between AF and AF's VFs. Patch kernel-patches#6 This patch adds support for MBOX communication between NIC PF and its VFs. ==================== Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
…/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 fixes for 6.16, take kernel-patches#6 - Fix use of u64_replace_bits() in adjusting the guest's view of MDCR_EL2.HPMN.
pert script tests fails with segmentation fault as below: 92: perf script tests: --- start --- test child forked, pid 103769 DB test [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.012 MB /tmp/perf-test-script.7rbftEpOzX/perf.data (9 samples) ] /usr/libexec/perf-core/tests/shell/script.sh: line 35: 103780 Segmentation fault (core dumped) perf script -i "${perfdatafile}" -s "${db_test}" --- Cleaning up --- ---- end(-1) ---- 92: perf script tests : FAILED! Backtrace pointed to : #0 0x0000000010247dd0 in maps.machine () #1 0x00000000101d178c in db_export.sample () #2 0x00000000103412c8 in python_process_event () #3 0x000000001004eb28 in process_sample_event () #4 0x000000001024fcd0 in machines.deliver_event () #5 0x000000001025005c in perf_session.deliver_event () #6 0x00000000102568b0 in __ordered_events__flush.part.0 () #7 0x0000000010251618 in perf_session.process_events () #8 0x0000000010053620 in cmd_script () #9 0x00000000100b5a28 in run_builtin () #10 0x00000000100b5f94 in handle_internal_command () #11 0x0000000010011114 in main () Further investigation reveals that this occurs in the `perf script tests`, because it uses `db_test.py` script. This script sets `perf_db_export_mode = True`. With `perf_db_export_mode` enabled, if a sample originates from a hypervisor, perf doesn't set maps for "[H]" sample in the code. Consequently, `al->maps` remains NULL when `maps__machine(al->maps)` is called from `db_export__sample`. As al->maps can be NULL in case of Hypervisor samples , use thread->maps because even for Hypervisor sample, machine should exist. If we don't have machine for some reason, return -1 to avoid segmentation fault. Reported-by: Disha Goel <[email protected]> Signed-off-by: Aditya Bodkhe <[email protected]> Reviewed-by: Adrian Hunter <[email protected]> Tested-by: Disha Goel <[email protected]> Link: https://lore.kernel.org/r/[email protected] Suggested-by: Adrian Hunter <[email protected]> Signed-off-by: Namhyung Kim <[email protected]>
Without the change `perf `hangs up on charaster devices. On my system it's enough to run system-wide sampler for a few seconds to get the hangup: $ perf record -a -g --call-graph=dwarf $ perf report # hung `strace` shows that hangup happens on reading on a character device `/dev/dri/renderD128` $ strace -y -f -p 2780484 strace: Process 2780484 attached pread64(101</dev/dri/renderD128>, strace: Process 2780484 detached It's call trace descends into `elfutils`: $ gdb -p 2780484 (gdb) bt #0 0x00007f5e508f04b7 in __libc_pread64 (fd=101, buf=0x7fff9df7edb0, count=0, offset=0) at ../sysdeps/unix/sysv/linux/pread64.c:25 #1 0x00007f5e52b79515 in read_file () from /<<NIX>>/elfutils-0.192/lib/libelf.so.1 #2 0x00007f5e52b25666 in libdw_open_elf () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #3 0x00007f5e52b25907 in __libdw_open_file () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #4 0x00007f5e52b120a9 in dwfl_report_elf@@ELFUTILS_0.156 () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #5 0x000000000068bf20 in __report_module (al=al@entry=0x7fff9df80010, ip=ip@entry=139803237033216, ui=ui@entry=0x5369b5e0) at util/dso.h:537 #6 0x000000000068c3d1 in report_module (ip=139803237033216, ui=0x5369b5e0) at util/unwind-libdw.c:114 #7 frame_callback (state=0x535aef10, arg=0x5369b5e0) at util/unwind-libdw.c:242 #8 0x00007f5e52b261d3 in dwfl_thread_getframes () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #9 0x00007f5e52b25bdb in get_one_thread_cb () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #10 0x00007f5e52b25faa in dwfl_getthreads () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #11 0x00007f5e52b26514 in dwfl_getthread_frames () from /<<NIX>>/elfutils-0.192/lib/libdw.so.1 #12 0x000000000068c6ce in unwind__get_entries (cb=cb@entry=0x5d4620 <unwind_entry>, arg=arg@entry=0x10cd5fa0, thread=thread@entry=0x1076a290, data=data@entry=0x7fff9df80540, max_stack=max_stack@entry=127, best_effort=best_effort@entry=false) at util/thread.h:152 #13 0x00000000005dae95 in thread__resolve_callchain_unwind (evsel=0x106006d0, thread=0x1076a290, cursor=0x10cd5fa0, sample=0x7fff9df80540, max_stack=127, symbols=true) at util/machine.c:2939 #14 thread__resolve_callchain_unwind (thread=0x1076a290, cursor=0x10cd5fa0, evsel=0x106006d0, sample=0x7fff9df80540, max_stack=127, symbols=true) at util/machine.c:2920 #15 __thread__resolve_callchain (thread=0x1076a290, cursor=0x10cd5fa0, evsel=0x106006d0, evsel@entry=0x7fff9df80440, sample=0x7fff9df80540, parent=parent@entry=0x7fff9df804a0, root_al=root_al@entry=0x7fff9df80440, max_stack=127, symbols=true) at util/machine.c:2970 #16 0x00000000005d0cb2 in thread__resolve_callchain (thread=<optimized out>, cursor=<optimized out>, evsel=0x7fff9df80440, sample=<optimized out>, parent=0x7fff9df804a0, root_al=0x7fff9df80440, max_stack=127) at util/machine.h:198 #17 sample__resolve_callchain (sample=<optimized out>, cursor=<optimized out>, parent=parent@entry=0x7fff9df804a0, evsel=evsel@entry=0x106006d0, al=al@entry=0x7fff9df80440, max_stack=max_stack@entry=127) at util/callchain.c:1127 #18 0x0000000000617e08 in hist_entry_iter__add (iter=iter@entry=0x7fff9df80480, al=al@entry=0x7fff9df80440, max_stack_depth=127, arg=arg@entry=0x7fff9df81ae0) at util/hist.c:1255 #19 0x000000000045d2d0 in process_sample_event (tool=0x7fff9df81ae0, event=<optimized out>, sample=0x7fff9df80540, evsel=0x106006d0, machine=<optimized out>) at builtin-report.c:334 #20 0x00000000005e3bb1 in perf_session__deliver_event (session=0x105ff2c0, event=0x7f5c7d735ca0, tool=0x7fff9df81ae0, file_offset=2914716832, file_path=0x105ffbf0 "perf.data") at util/session.c:1367 #21 0x00000000005e8d93 in do_flush (oe=0x105ffa50, show_progress=false) at util/ordered-events.c:245 #22 __ordered_events__flush (oe=0x105ffa50, how=OE_FLUSH__ROUND, timestamp=<optimized out>) at util/ordered-events.c:324 #23 0x00000000005e1f64 in perf_session__process_user_event (session=0x105ff2c0, event=0x7f5c7d752b18, file_offset=2914835224, file_path=0x105ffbf0 "perf.data") at util/session.c:1419 #24 0x00000000005e47c7 in reader__read_event (rd=rd@entry=0x7fff9df81260, session=session@entry=0x105ff2c0, --Type <RET> for more, q to quit, c to continue without paging-- quit prog=prog@entry=0x7fff9df81220) at util/session.c:2132 #25 0x00000000005e4b37 in reader__process_events (rd=0x7fff9df81260, session=0x105ff2c0, prog=0x7fff9df81220) at util/session.c:2181 #26 __perf_session__process_events (session=0x105ff2c0) at util/session.c:2226 #27 perf_session__process_events (session=session@entry=0x105ff2c0) at util/session.c:2390 #28 0x0000000000460add in __cmd_report (rep=0x7fff9df81ae0) at builtin-report.c:1076 #29 cmd_report (argc=<optimized out>, argv=<optimized out>) at builtin-report.c:1827 #30 0x00000000004c5a40 in run_builtin (p=p@entry=0xd8f7f8 <commands+312>, argc=argc@entry=1, argv=argv@entry=0x7fff9df844b0) at perf.c:351 #31 0x00000000004c5d63 in handle_internal_command (argc=argc@entry=1, argv=argv@entry=0x7fff9df844b0) at perf.c:404 #32 0x0000000000442de3 in run_argv (argcp=<synthetic pointer>, argv=<synthetic pointer>) at perf.c:448 #33 main (argc=<optimized out>, argv=0x7fff9df844b0) at perf.c:556 The hangup happens because nothing in` perf` or `elfutils` checks if a mapped file is easily readable. The change conservatively skips all non-regular files. Signed-off-by: Sergei Trofimovich <[email protected]> Acked-by: Namhyung Kim <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Namhyung Kim <[email protected]>
Symbolize stack traces by creating a live machine. Add this functionality to dump_stack and switch dump_stack users to use it. Switch TUI to use it. Add stack traces to the child test function which can be useful to diagnose blocked code. Example output: ``` $ perf test -vv PERF_RECORD_ ... 7: PERF_RECORD_* events & perf_sample fields: 7: PERF_RECORD_* events & perf_sample fields : Running (1 active) ^C Signal (2) while running tests. Terminating tests with the same signal Internal test harness failure. Completing any started tests: : 7: PERF_RECORD_* events & perf_sample fields: ---- unexpected signal (2) ---- #0 0x55788c6210a3 in child_test_sig_handler builtin-test.c:0 #1 0x7fc12fe49df0 in __restore_rt libc_sigaction.c:0 #2 0x7fc12fe99687 in __internal_syscall_cancel cancellation.c:64 #3 0x7fc12fee5f7a in clock_nanosleep@GLIBC_2.2.5 clock_nanosleep.c:72 #4 0x7fc12fef1393 in __nanosleep nanosleep.c:26 #5 0x7fc12ff02d68 in __sleep sleep.c:55 #6 0x55788c63196b in test__PERF_RECORD perf-record.c:0 #7 0x55788c620fb0 in run_test_child builtin-test.c:0 #8 0x55788c5bd18d in start_command run-command.c:127 #9 0x55788c621ef3 in __cmd_test builtin-test.c:0 #10 0x55788c6225bf in cmd_test ??:0 #11 0x55788c5afbd0 in run_builtin perf.c:0 #12 0x55788c5afeeb in handle_internal_command perf.c:0 #13 0x55788c52b383 in main ??:0 #14 0x7fc12fe33ca8 in __libc_start_call_main libc_start_call_main.h:74 #15 0x7fc12fe33d65 in __libc_start_main@@GLIBC_2.34 libc-start.c:128 #16 0x55788c52b9d1 in _start ??:0 ---- unexpected signal (2) ---- #0 0x55788c6210a3 in child_test_sig_handler builtin-test.c:0 #1 0x7fc12fe49df0 in __restore_rt libc_sigaction.c:0 #2 0x7fc12fea3a14 in pthread_sigmask@GLIBC_2.2.5 pthread_sigmask.c:45 #3 0x7fc12fe49fd9 in __GI___sigprocmask sigprocmask.c:26 #4 0x7fc12ff2601b in __longjmp_chk longjmp.c:36 #5 0x55788c6210c0 in print_test_result.isra.0 builtin-test.c:0 #6 0x7fc12fe49df0 in __restore_rt libc_sigaction.c:0 #7 0x7fc12fe99687 in __internal_syscall_cancel cancellation.c:64 #8 0x7fc12fee5f7a in clock_nanosleep@GLIBC_2.2.5 clock_nanosleep.c:72 #9 0x7fc12fef1393 in __nanosleep nanosleep.c:26 #10 0x7fc12ff02d68 in __sleep sleep.c:55 #11 0x55788c63196b in test__PERF_RECORD perf-record.c:0 #12 0x55788c620fb0 in run_test_child builtin-test.c:0 #13 0x55788c5bd18d in start_command run-command.c:127 #14 0x55788c621ef3 in __cmd_test builtin-test.c:0 #15 0x55788c6225bf in cmd_test ??:0 #16 0x55788c5afbd0 in run_builtin perf.c:0 #17 0x55788c5afeeb in handle_internal_command perf.c:0 #18 0x55788c52b383 in main ??:0 #19 0x7fc12fe33ca8 in __libc_start_call_main libc_start_call_main.h:74 #20 0x7fc12fe33d65 in __libc_start_main@@GLIBC_2.34 libc-start.c:128 #21 0x55788c52b9d1 in _start ??:0 7: PERF_RECORD_* events & perf_sample fields : Skip (permissions) ``` Signed-off-by: Ian Rogers <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Namhyung Kim <[email protected]>
Calling perf top with branch filters enabled on Intel CPU's with branch counters logging (A.K.A LBR event logging [1]) support results in a segfault. $ perf top -e '{cpu_core/cpu-cycles/,cpu_core/event=0xc6,umask=0x3,frontend=0x11,name=frontend_retired_dsb_miss/}' -j any,counter ... Thread 27 "perf" received signal SIGSEGV, Segmentation fault. [Switching to Thread 0x7fffafff76c0 (LWP 949003)] perf_env__find_br_cntr_info (env=0xf66dc0 <perf_env>, nr=0x0, width=0x7fffafff62c0) at util/env.c:653 653 *width = env->cpu_pmu_caps ? env->br_cntr_width : (gdb) bt #0 perf_env__find_br_cntr_info (env=0xf66dc0 <perf_env>, nr=0x0, width=0x7fffafff62c0) at util/env.c:653 #1 0x00000000005b1599 in symbol__account_br_cntr (branch=0x7fffcc3db580, evsel=0xfea2d0, offset=12, br_cntr=8) at util/annotate.c:345 #2 0x00000000005b17fb in symbol__account_cycles (addr=5658172, start=5658160, sym=0x7fffcc0ee420, cycles=539, evsel=0xfea2d0, br_cntr=8) at util/annotate.c:389 #3 0x00000000005b1976 in addr_map_symbol__account_cycles (ams=0x7fffcd7b01d0, start=0x7fffcd7b02b0, cycles=539, evsel=0xfea2d0, br_cntr=8) at util/annotate.c:422 #4 0x000000000068d57f in hist__account_cycles (bs=0x110d288, al=0x7fffafff6540, sample=0x7fffafff6760, nonany_branch_mode=false, total_cycles=0x0, evsel=0xfea2d0) at util/hist.c:2850 #5 0x0000000000446216 in hist_iter__top_callback (iter=0x7fffafff6590, al=0x7fffafff6540, single=true, arg=0x7fffffff9e00) at builtin-top.c:737 #6 0x0000000000689787 in hist_entry_iter__add (iter=0x7fffafff6590, al=0x7fffafff6540, max_stack_depth=127, arg=0x7fffffff9e00) at util/hist.c:1359 #7 0x0000000000446710 in perf_event__process_sample (tool=0x7fffffff9e00, event=0x110d250, evsel=0xfea2d0, sample=0x7fffafff6760, machine=0x108c968) at builtin-top.c:845 #8 0x0000000000447735 in deliver_event (qe=0x7fffffffa120, qevent=0x10fc200) at builtin-top.c:1211 #9 0x000000000064ccae in do_flush (oe=0x7fffffffa120, show_progress=false) at util/ordered-events.c:245 #10 0x000000000064d005 in __ordered_events__flush (oe=0x7fffffffa120, how=OE_FLUSH__TOP, timestamp=0) at util/ordered-events.c:324 #11 0x000000000064d0ef in ordered_events__flush (oe=0x7fffffffa120, how=OE_FLUSH__TOP) at util/ordered-events.c:342 #12 0x00000000004472a9 in process_thread (arg=0x7fffffff9e00) at builtin-top.c:1120 #13 0x00007ffff6e7dba8 in start_thread (arg=<optimized out>) at pthread_create.c:448 #14 0x00007ffff6f01b8c in __GI___clone3 () at ../sysdeps/unix/sysv/linux/x86_64/clone3.S:78 The cause is that perf_env__find_br_cntr_info tries to access a null pointer pmu_caps in the perf_env struct. A similar issue exists for homogeneous core systems which use the cpu_pmu_caps structure. Fix this by populating cpu_pmu_caps and pmu_caps structures with values from sysfs when calling perf top with branch stack sampling enabled. [1], LBR event logging introduced here: https://lore.kernel.org/all/[email protected]/ Reviewed-by: Ian Rogers <[email protected]> Signed-off-by: Thomas Falcon <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Namhyung Kim <[email protected]>
These iterations require the read lock, otherwise RCU lockdep will splat: ============================= WARNING: suspicious RCU usage 6.17.0-rc3-00014-g31419c045d64 kernel-patches#6 Tainted: G O ----------------------------- drivers/base/power/main.c:1333 RCU-list traversed in non-reader section!! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 5 locks held by rtcwake/547: #0: 00000000643ab418 (sb_writers#6){.+.+}-{0:0}, at: file_start_write+0x2b/0x3a kernel-patches#1: 0000000067a0ca88 (&of->mutex#2){+.+.}-{4:4}, at: kernfs_fop_write_iter+0x181/0x24b kernel-patches#2: 00000000631eac40 (kn->active#3){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x191/0x24b kernel-patches#3: 00000000609a1308 (system_transition_mutex){+.+.}-{4:4}, at: pm_suspend+0xaf/0x30b kernel-patches#4: 0000000060c0fdb0 (device_links_srcu){.+.+}-{0:0}, at: device_links_read_lock+0x75/0x98 stack backtrace: CPU: 0 UID: 0 PID: 547 Comm: rtcwake Tainted: G O 6.17.0-rc3-00014-g31419c045d64 kernel-patches#6 VOLUNTARY Tainted: [O]=OOT_MODULE Stack: 223721b3a80 6089eac6 00000001 00000001 ffffff00 6089eac6 00000535 6086e528 721b3ac0 6003c294 00000000 60031fc0 Call Trace: [<600407ed>] show_stack+0x10e/0x127 [<6003c294>] dump_stack_lvl+0x77/0xc6 [<6003c2fd>] dump_stack+0x1a/0x20 [<600bc2f8>] lockdep_rcu_suspicious+0x116/0x13e [<603d8ea1>] dpm_async_suspend_superior+0x117/0x17e [<603d980f>] device_suspend+0x528/0x541 [<603da24b>] dpm_suspend+0x1a2/0x267 [<603da837>] dpm_suspend_start+0x5d/0x72 [<600ca0c9>] suspend_devices_and_enter+0xab/0x736 [...] Add the fourth argument to the iteration to annotate this and avoid the splat. Fixes: 0679963 ("PM: sleep: Make async suspend handle suppliers like parents") Fixes: ed18738 ("PM: sleep: Make async resume handle consumers like children") Signed-off-by: Johannes Berg <[email protected]> Link: https://patch.msgid.link/20250826134348.aba79f6e6299.I9ecf55da46ccf33778f2c018a82e1819d815b348@changeid Signed-off-by: Rafael J. Wysocki <[email protected]>
Petr Machata says: ==================== bridge: Allow keeping local FDB entries only on VLAN 0 The bridge FDB contains one local entry per port per VLAN, for the MAC of the port in question, and likewise for the bridge itself. This allows bridge to locally receive and punt "up" any packets whose destination MAC address matches that of one of the bridge interfaces or of the bridge itself. The number of these local "service" FDB entries grows linearly with number of bridge-global VLAN memberships, but that in turn will tend to grow quadratically with number of ports and per-port VLAN memberships. While that does not cause issues during forwarding lookups, it does make dumps impractically slow. As an example, with 100 interfaces, each on 4K VLANs, a full dump of FDB that just contains these 400K local entries, takes 6.5s. That's _without_ considering iproute2 formatting overhead, this is just how long it takes to walk the FDB (repeatedly), serialize it into netlink messages, and parse the messages back in userspace. This is to illustrate that with growing number of ports and VLANs, the time required to dump this repetitive information blows up. Arguably 4K VLANs per interface is not a very realistic configuration, but then modern switches can instead have several hundred interfaces, and we have fielded requests for >1K VLAN memberships per port among customers. FDB entries are currently all kept on a single linked list, and then dumping uses this linked list to walk all entries and dump them in order. When the message buffer is full, the iteration is cut short, and later restarted. Of course, to restart the iteration, it's first necessary to walk the already-dumped front part of the list before starting dumping again. So one possibility is to organize the FDB entries in different structure more amenable to walk restarts. One option is to walk directly the hash table. The advantage is that no auxiliary structure needs to be introduced. With a rough sketch of this approach, the above scenario gets dumped in not quite 3 s, saving over 50 % of time. However hash table iteration requires maintaining an active cursor that must be collected when the dump is aborted. It looks like that would require changes in the NDO protocol to allow to run this cleanup. Moreover, on hash table resize the iteration is simply restarted. FDB dumps are currently not guaranteed to correspond to any one particular state: entries can be missed, or be duplicated. But with hash table iteration we would get that plus the much less graceful resize behavior, where swaths of FDB are duplicated. Another option is to maintain the FDB entries in a red-black tree. We have a PoC of this approach on hand, and the above scenario is dumped in about 2.5 s. Still not as snappy as we'd like it, but better than the hash table. However the savings come at the expense of a more expensive insertion, and require locking during dumps, which blocks insertion. The upside of these approaches is that they provide benefits whatever the FDB contents. But it does not seem like either of these is workable. However we intend to clean up the RB tree PoC and present it for consideration later on in case the trade-offs are considered acceptable. Yet another option might be to use in-kernel FDB filtering, and to filter the local entries when dumping. Unfortunately, this does not help all that much either, because the linked-list walk still needs to happen. Also, with the obvious filtering interface built around ndm_flags / ndm_state filtering, one can't just exclude pure local entries in one query. One needs to dump all non-local entries first, and then to get permanent entries in another run filter local & added_by_user. I.e. one needs to pay the iteration overhead twice, and then integrate the result in userspace. To get significant savings, one would need a very specific knob like "dump, but skip/only include local entries". But if we are adding a local-specific knobs, maybe let's have an option to just not duplicate them in the first place. All this FDB duplication is there merely to make things snappy during forwarding. But high-radix switches with thousands of VLANs typically do not process much traffic in the SW datapath at all, but rather offload vast majority of it. So we could exchange some of the runtime performance for a neater FDB. To that end, in this patchset, introduce a new bridge option, BR_BOOLOPT_FDB_LOCAL_VLAN_0, which when enabled, has local FDB entries installed only on VLAN 0, instead of duplicating them across all VLANs. Then to maintain the local termination behavior, on FDB miss, the bridge does a second lookup on VLAN 0. Enabling this option changes the bridge behavior in expected ways. Since the entries are only kept on VLAN 0, FDB get, flush and dump will not perceive them on non-0 VLANs. And deleting the VLAN 0 entry affects forwarding on all VLANs. This patchset is loosely based on a privately circulated patch by Nikolay Aleksandrov. The patchset progresses as follows: - Patch kernel-patches#1 introduces a bridge option to enable the above feature. Then patches kernel-patches#2 to kernel-patches#5 gradually patch the bridge to do the right thing when the option is enabled. Finally patch kernel-patches#6 adds the UAPI knob and the code for when the feature is enabled or disabled. - Patches kernel-patches#7, kernel-patches#8 and kernel-patches#9 contain fixes and improvements to selftest libraries - Patch kernel-patches#10 contains a new selftest ==================== Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
Commit 0e2f80a("fs/dax: ensure all pages are idle prior to filesystem unmount") introduced the WARN_ON_ONCE to capture whether the filesystem has removed all DAX entries or not and applied the fix to xfs and ext4. Apply the missed fix on erofs to fix the runtime warning: [ 5.266254] ------------[ cut here ]------------ [ 5.266274] WARNING: CPU: 6 PID: 3109 at mm/truncate.c:89 truncate_folio_batch_exceptionals+0xff/0x260 [ 5.266294] Modules linked in: [ 5.266999] CPU: 6 UID: 0 PID: 3109 Comm: umount Tainted: G S 6.16.0+ kernel-patches#6 PREEMPT(voluntary) [ 5.267012] Tainted: [S]=CPU_OUT_OF_SPEC [ 5.267017] Hardware name: Dell Inc. OptiPlex 5000/05WXFV, BIOS 1.5.1 08/24/2022 [ 5.267024] RIP: 0010:truncate_folio_batch_exceptionals+0xff/0x260 [ 5.267076] Code: 00 00 41 39 df 7f 11 eb 78 83 c3 01 49 83 c4 08 41 39 df 74 6c 48 63 f3 48 83 fe 1f 0f 83 3c 01 00 00 43 f6 44 26 08 01 74 df <0f> 0b 4a 8b 34 22 4c 89 ef 48 89 55 90 e8 ff 54 1f 00 48 8b 55 90 [ 5.267083] RSP: 0018:ffffc900013f36c8 EFLAGS: 00010202 [ 5.267095] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 [ 5.267101] RDX: ffffc900013f3790 RSI: 0000000000000000 RDI: ffff8882a1407898 [ 5.267108] RBP: ffffc900013f3740 R08: 0000000000000000 R09: 0000000000000000 [ 5.267113] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 [ 5.267119] R13: ffff8882a1407ab8 R14: ffffc900013f3888 R15: 0000000000000001 [ 5.267125] FS: 00007aaa8b437800(0000) GS:ffff88850025b000(0000) knlGS:0000000000000000 [ 5.267132] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5.267138] CR2: 00007aaa8b3aac10 CR3: 000000024f764000 CR4: 0000000000f52ef0 [ 5.267144] PKRU: 55555554 [ 5.267150] Call Trace: [ 5.267154] <TASK> [ 5.267181] truncate_inode_pages_range+0x118/0x5e0 [ 5.267193] ? save_trace+0x54/0x390 [ 5.267296] truncate_inode_pages_final+0x43/0x60 [ 5.267309] evict+0x2a4/0x2c0 [ 5.267339] dispose_list+0x39/0x80 [ 5.267352] evict_inodes+0x150/0x1b0 [ 5.267376] generic_shutdown_super+0x41/0x180 [ 5.267390] kill_block_super+0x1b/0x50 [ 5.267402] erofs_kill_sb+0x81/0x90 [erofs] [ 5.267436] deactivate_locked_super+0x32/0xb0 [ 5.267450] deactivate_super+0x46/0x60 [ 5.267460] cleanup_mnt+0xc3/0x170 [ 5.267475] __cleanup_mnt+0x12/0x20 [ 5.267485] task_work_run+0x5d/0xb0 [ 5.267499] exit_to_user_mode_loop+0x144/0x170 [ 5.267512] do_syscall_64+0x2b9/0x7c0 [ 5.267523] ? __lock_acquire+0x665/0x2ce0 [ 5.267535] ? __lock_acquire+0x665/0x2ce0 [ 5.267560] ? lock_acquire+0xcd/0x300 [ 5.267573] ? find_held_lock+0x31/0x90 [ 5.267582] ? mntput_no_expire+0x97/0x4e0 [ 5.267606] ? mntput_no_expire+0xa1/0x4e0 [ 5.267625] ? mntput+0x24/0x50 [ 5.267634] ? path_put+0x1e/0x30 [ 5.267647] ? do_faccessat+0x120/0x2f0 [ 5.267677] ? do_syscall_64+0x1a2/0x7c0 [ 5.267686] ? from_kgid_munged+0x17/0x30 [ 5.267703] ? from_kuid_munged+0x13/0x30 [ 5.267711] ? __do_sys_getuid+0x3d/0x50 [ 5.267724] ? do_syscall_64+0x1a2/0x7c0 [ 5.267732] ? irqentry_exit+0x77/0xb0 [ 5.267743] ? clear_bhb_loop+0x30/0x80 [ 5.267752] ? clear_bhb_loop+0x30/0x80 [ 5.267765] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 5.267772] RIP: 0033:0x7aaa8b32a9fb [ 5.267781] Code: c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 f3 0f 1e fa 31 f6 e9 05 00 00 00 0f 1f 44 00 00 f3 0f 1e fa b8 a6 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 05 c3 0f 1f 40 00 48 8b 15 e9 83 0d 00 f7 d8 [ 5.267787] RSP: 002b:00007ffd7c4c9468 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [ 5.267796] RAX: 0000000000000000 RBX: 00005a61592a8b00 RCX: 00007aaa8b32a9fb [ 5.267802] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00005a61592b2080 [ 5.267806] RBP: 00007ffd7c4c9540 R08: 00007aaa8b403b20 R09: 0000000000000020 [ 5.267812] R10: 0000000000000001 R11: 0000000000000246 R12: 00005a61592a8c00 [ 5.267817] R13: 0000000000000000 R14: 00005a61592b2080 R15: 00005a61592a8f10 [ 5.267849] </TASK> [ 5.267854] irq event stamp: 4721 [ 5.267859] hardirqs last enabled at (4727): [<ffffffff814abf50>] __up_console_sem+0x90/0xa0 [ 5.267873] hardirqs last disabled at (4732): [<ffffffff814abf35>] __up_console_sem+0x75/0xa0 [ 5.267884] softirqs last enabled at (3044): [<ffffffff8132adb3>] kernel_fpu_end+0x53/0x70 [ 5.267895] softirqs last disabled at (3042): [<ffffffff8132b5f4>] kernel_fpu_begin_mask+0xc4/0x120 [ 5.267905] ---[ end trace 0000000000000000 ]--- Fixes: bde708f ("fs/dax: always remove DAX page-cache entries when breaking layouts") Signed-off-by: Yuezhang Mo <[email protected]> Reviewed-by: Friendy Su <[email protected]> Reviewed-by: Daniel Palmer <[email protected]> Reviewed-by: Gao Xiang <[email protected]> Signed-off-by: Gao Xiang <[email protected]>
Pull request for series with
subject: xsk: exit NAPI loop when AF_XDP Rx ring is full
version: 1
url: https://patchwork.ozlabs.org/project/netdev/list/?series=199536