-
Notifications
You must be signed in to change notification settings - Fork 15
Description
Hi, developers! Thanks for this promising and potentially useful package.
I'm studying differentiable convex optimisation and trying to implement it to the PLSE, a neural network that I proposed.
I used to use cvxpylayers but I'm sick of the slow speed of Python stuff. So I'm wondering if I can implement this through DiffOpt.jl.
Background
I have a neural network (called PLSE) f(x, u; \theta) with two inputs x (condition) and u (decision) and the network parameter theta. f(x, \cdot) is guaranteed to be convex, and the corresponding convex optimisation is exponential cone program (the original form is log-sum-exp). This is implemented in ParametrisedConvexApproximators.jl.
What I'm trying to do
It is pretty simple.
I wanna get the derivative du*/d\theta where the optimal decision u*(x, \theta) which minimises f(x, \cdot; \theta) possibly within a prescribed set (decision space) and the network parameter \theta.
You can find this idea with cvxpylayers here.
Issues with DiffOpt.jl
Before addressing this, I'm not familiar with this package. Please lmk if there are any workarounds that I missed.
So what I tried is following Custom ReLU example. For this, I need to define the objective function.
An example code would be
using ParametrisedConvexApproximators
using JuMP
import DiffOpt
import SCS
import ChainRulesCore
import Flux
function main()
model = Model(() -> DiffOpt.diff_optimizer(SCS.Optimizer))
n, m = 3, 2
i_max = 20
T = 1e-0
h_array = [64]
act = Flux.relu
plse = PLSE(n, m, i_max, T, h_array, act)
x = rand(n)
@show plse(x, rand(m))
@variable(model, u[1:m])
# @objective(model, Min, plse(x, u)[1])
# optimize!(model)
# return value.(u)
endNote that the output of plse is a vector with 1-element.
And the following is how to obtain the plse(x, u), which can be found here.
function (nn::PLSE)(x::AbstractArray, u::AbstractArray)
@unpack T = nn
is_vector = length(size(x)) == 1
@assert is_vector == (length(size(u)) == 1)
x = is_vector ? reshape(x, :, 1) : x
u = is_vector ? reshape(u, :, 1) : u
@assert size(x)[2] == size(u)[2]
tmp = affine_map(nn, x, u)
_res = T * Flux.logsumexp((1/T)*tmp, dims=1)
res = is_vector ? reshape(_res, 1) : _res
return res
endAnd in the Flux.logsumexp, I encountered this error:
1|julia> Flux.logsumexp((1/T)*tmp, dims=1)
ERROR: MethodError: no method matching isless(::AffExpr, ::AffExpr)
Closest candidates are:
isless(::Any, ::Missing) at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/base/missing.jl:88
isless(::Missing, ::Any) at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/base/missing.jl:87
Stacktrace:
[1] max(x::AffExpr, y::AffExpr)
@ Base ./operators.jl:492
[2] mapreduce_impl(f::typeof(identity), op::typeof(max), A::Matrix{AffExpr}, first::Int64, last::Int64)
@ Base ./reduce.jl:635
[3] _mapreducedim!(f::typeof(identity), op::typeof(max), R::Matrix{AffExpr}, A::Matrix{AffExpr})
@ Base ./reducedim.jl:260
[4] mapreducedim!
@ ./reducedim.jl:289 [inlined]
[5] _mapreduce_dim
@ ./reducedim.jl:336 [inlined]
[6] #mapreduce#731
@ ./reducedim.jl:322 [inlined]
[7] #_maximum#769
@ ./reducedim.jl:916 [inlined]
[8] _maximum
@ ./reducedim.jl:916 [inlined]
[9] #_maximum#768
@ ./reducedim.jl:915 [inlined]
[10] _maximum
@ ./reducedim.jl:915 [inlined]
[11] #maximum#746
@ ./reducedim.jl:889 [inlined]
[12] logsumexp(x::Matrix{AffExpr}; dims::Int64)
@ NNlib ~/.julia/packages/NNlib/tvMmZ/src/softmax.jl:142
[13] top-level scope
@ none:1
[14] eval
@ ./boot.jl:373 [inlined]
[15] eval_code(frame::JuliaInterpreter.Frame, expr::Expr)
@ JuliaInterpreter ~/.julia/packages/JuliaInterpreter/4B89D/src/utils.jl:649
[16] eval_code(frame::JuliaInterpreter.Frame, command::String)
@ JuliaInterpreter ~/.julia/packages/JuliaInterpreter/4B89D/src/utils.jl:627
[17] _eval_code(frame::JuliaInterpreter.Frame, code::String)
@ Debugger ~/.julia/packages/Debugger/I4w2y/src/repl.jl:211
[18] (::Debugger.var"#27#29"{Debugger.DebuggerState})(s::REPL.LineEdit.MIState, buf::IOBuffer, ok::Bool)
@ Debugger ~/.julia/packages/Debugger/I4w2y/src/repl.jl:194
[19] #invokelatest#2
@ ./essentials.jl:716 [inlined]
[20] invokelatest
@ ./essentials.jl:714 [inlined]
[21] run_interface(terminal::REPL.Terminals.TextTerminal, m::REPL.LineEdit.ModalInterface, s::REPL.LineEdit.MIState)
@ REPL.LineEdit /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/stdlib/v1.7/REPL/src/LineEdit.jl:2493
[22] run_interface(terminal::REPL.Terminals.TextTerminal, m::REPL.LineEdit.ModalInterface)
@ REPL.LineEdit /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/stdlib/v1.7/REPL/src/LineEdit.jl:2487
[23] RunDebugger(frame::JuliaInterpreter.Frame, repl::Nothing, terminal::Nothing; initial_continue::Bool)
@ Debugger ~/.julia/packages/Debugger/I4w2y/src/repl.jl:167
[24] macro expansion
@ ~/.julia/packages/Debugger/I4w2y/src/Debugger.jl:137 [inlined]
[25] main()
@ Main ~/.julia/dev/ParametrisedConvexApproximators/test/tmp.jl:20
[26] top-level scope
@ REPL[2]:1
[27] top-level scope
@ ~/.julia/packages/CUDA/sCev8/src/initialization.jl:52
1|julia> maximum(tmp; dims=1)
ERROR: MethodError: no method matching isless(::AffExpr, ::AffExpr)
Closest candidates are:
isless(::Any, ::Missing) at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/base/missing.jl:88
isless(::Missing, ::Any) at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/base/missing.jl:87
Stacktrace:
[1] max(x::AffExpr, y::AffExpr)
@ Base ./operators.jl:492
[2] mapreduce_impl(f::typeof(identity), op::typeof(max), A::Matrix{AffExpr}, first::Int64, last::Int64)
@ Base ./reduce.jl:635
[3] _mapreducedim!(f::typeof(identity), op::typeof(max), R::Matrix{AffExpr}, A::Matrix{AffExpr})
@ Base ./reducedim.jl:260
[4] mapreducedim!
@ ./reducedim.jl:289 [inlined]
[5] _mapreduce_dim
@ ./reducedim.jl:336 [inlined]
[6] #mapreduce#731
@ ./reducedim.jl:322 [inlined]
[7] #_maximum#769
@ ./reducedim.jl:916 [inlined]
[8] _maximum
@ ./reducedim.jl:916 [inlined]
[9] #_maximum#768
@ ./reducedim.jl:915 [inlined]
[10] _maximum
@ ./reducedim.jl:915 [inlined]
[11] #maximum#746
@ ./reducedim.jl:889 [inlined]
[12] top-level scope
@ none:1
[13] eval
@ ./boot.jl:373 [inlined]
[14] eval_code(frame::JuliaInterpreter.Frame, expr::Expr)
@ JuliaInterpreter ~/.julia/packages/JuliaInterpreter/4B89D/src/utils.jl:649
[15] eval_code(frame::JuliaInterpreter.Frame, command::String)
@ JuliaInterpreter ~/.julia/packages/JuliaInterpreter/4B89D/src/utils.jl:627
[16] _eval_code(frame::JuliaInterpreter.Frame, code::String)
@ Debugger ~/.julia/packages/Debugger/I4w2y/src/repl.jl:211
[17] (::Debugger.var"#27#29"{Debugger.DebuggerState})(s::REPL.LineEdit.MIState, buf::IOBuffer, ok::Bool)
@ Debugger ~/.julia/packages/Debugger/I4w2y/src/repl.jl:194
[18] #invokelatest#2
@ ./essentials.jl:716 [inlined]
[19] invokelatest
@ ./essentials.jl:714 [inlined]
[20] run_interface(terminal::REPL.Terminals.TextTerminal, m::REPL.LineEdit.ModalInterface, s::REPL.LineEdit.MIState)
@ REPL.LineEdit /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/stdlib/v1.7/REPL/src/LineEdit.jl:2493
[21] run_interface(terminal::REPL.Terminals.TextTerminal, m::REPL.LineEdit.ModalInterface)
@ REPL.LineEdit /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/stdlib/v1.7/REPL/src/LineEdit.jl:2487
[22] RunDebugger(frame::JuliaInterpreter.Frame, repl::Nothing, terminal::Nothing; initial_continue::Bool)
@ Debugger ~/.julia/packages/Debugger/I4w2y/src/repl.jl:167
[23] macro expansion
@ ~/.julia/packages/Debugger/I4w2y/src/Debugger.jl:137 [inlined]
[24] main()
@ Main ~/.julia/dev/ParametrisedConvexApproximators/test/tmp.jl:20
[25] top-level scope
@ REPL[2]:1
[26] top-level scope
@ ~/.julia/packages/CUDA/sCev8/src/initialization.jl:52It may be due to the lack of my background knowledge of how to use JuMP and DiffOpt stuff.
How can I realise my idea with DiffOpt.jl?