Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion python/llm/src/ipex_llm/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1580,8 +1580,12 @@ def _optimize_post(model, lightweight_bmm=False):
model.batch_chat = MethodType(internvl_batch_chat, model)
if model.vision_model.__class__.__name__ == "InternVisionModel":
from ipex_llm.transformers.models.internvl import _get_pos_embed
vision_embedding = model.vision_model.embeddings
from ipex_llm.transformers.models.internvl import intern_attention_forward
vision_model = model.vision_model
vision_embedding = vision_model.embeddings
vision_embedding._get_pos_embed = MethodType(_get_pos_embed, vision_embedding)
vision_module = importlib.import_module(vision_model.__class__.__module__)
convert_forward(vision_model, vision_module.InternAttention, intern_attention_forward)
_optimize_post(model.language_model, lightweight_bmm=lightweight_bmm)
elif model.config.model_type == "qwen":
if hasattr(model.config, "visual"):
Expand Down
24 changes: 24 additions & 0 deletions python/llm/src/ipex_llm/transformers/models/internvl.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,3 +163,27 @@ def internvl_batch_chat(self, tokenizer, pixel_values, questions, generation_con
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
responses = [response.split(template.sep)[0].strip() for response in responses]
return responses


def intern_attention_forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)

if self.qk_normalization:
B_, H_, N_, D_ = q.shape
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)

if x.device.type == "xpu":
import xe_addons
x = xe_addons.sdp_non_causal(q.contiguous(), k.contiguous(), v.contiguous(), None)
else:
attn = ((q * self.scale) @ k.transpose(-2, -1))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
Loading