Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


import torch
import time
import argparse
from ipex_llm.transformers.npu_pipeline_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers.utils import logging

logger = logging.get_logger(__name__)

def get_prompt(message: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
# The first user input is _not_ stripped
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
message = message.strip() if do_strip else message
texts.append(f'{message} [/INST]')
return ''.join(texts)

if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Predict Tokens using `generate()` API for npu model"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default=r"C:\\Llama2-converted-weights\\",
help="The folder path of converted model blobs",
)
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
parser.add_argument("--max-output-len", type=int, default=1024)

args = parser.parse_args()
model_path = args.repo_id_or_model_path

model = AutoModelForCausalLM.from_pretrained(model_path,
ov_model=True,
max_output_len=args.max_output_len,
model_name="Model70")

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

DEFAULT_SYSTEM_PROMPT = """\
"""

print("-" * 80)
print("done")
with torch.inference_mode():
print("finish to load")
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
print("input length:", len(_input_ids[0]))
st = time.time()
output = model.generate(
_input_ids, max_new_tokens=args.n_predict,
)
end = time.time()
print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)

print("-" * 80)
print("done")
print("success shut down")
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from .pipeline_model import *
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import sys
import ctypes
import pathlib
from ipex_llm.utils.common import invalidInputError


def get_shared_lib_info(lib_base_name: str):
# Determine the file extension based on the platform
if sys.platform.startswith("linux") or sys.platform == "darwin":
lib_ext = ".so"
elif sys.platform == "win32":
lib_ext = ".dll"
else:
invalidInputError(False, "Unsupported platform.")

# Construct the paths to the possible shared library names (python/llm/src/ipex-llm/llm/libs)
_base_path = pathlib.Path(__file__).parent.parent.parent.resolve()
_base_path = _base_path / 'libs'

lib_path = os.path.join(_base_path, lib_base_name + lib_ext)

return _base_path, lib_path

_, _lib_path = get_shared_lib_info("pipeline")

# Load the library
_lib = ctypes.cdll.LoadLibrary(_lib_path)

_lib.InitLLMPipeline.argtypes = [ctypes.c_int] * 5 + [ctypes.c_char_p] * 5
_lib.InitLLMPipeline.restype = ctypes.c_int

_lib.generate_serve.argtypes = [ctypes.c_int] * 5
_lib.generate_serve.restype = ctypes.c_int


def InitLLMPipeline(kv_len: int, num_head: int, head_dim: int, num_layers: int, vocab_size: int,
model_weight_dir: str, model_name: str,
first_blob_name: str, last_blob_name: str, rest_blob_name: str):
return _lib.InitLLMPipeline(kv_len, num_head, head_dim, num_layers, vocab_size,
model_weight_dir.encode('utf-8'), model_name.encode('utf-8'),
first_blob_name.encode('utf-8'), last_blob_name.encode('utf-8'),
rest_blob_name.encode('utf-8'))


def generate_serve(kv_len: int, num_head: int, head_dim: int, num_layers: int,
param_n_output: int):
_lib.generate_serve(kv_len, num_head, head_dim, num_layers, param_n_output)
Loading
Loading