Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
129 changes: 105 additions & 24 deletions python/llm/src/ipex_llm/transformers/models/qwen2_vl.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,10 +44,11 @@

from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal, should_use_fuse_rope
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
from ipex_llm.utils.common import invalidInputError

from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLAttention, Qwen2VLModel
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLAttention
from transformers.models.qwen2_vl.modeling_qwen2_vl import apply_multimodal_rotary_pos_emb
from transformers.models.qwen2_vl.modeling_qwen2_vl import repeat_kv
from transformers.modeling_outputs import BaseModelOutputWithPast
Expand All @@ -71,29 +72,105 @@ def qwen2_vl_model_forward(
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
# IPEX-LLM OPT: kv cache and quantize kv cache and sdp
inputs = input_ids if input_ids is not None else inputs_embeds
output_attentions = (
output_attentions if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache

# IPEX-LLM OPT start: kv cache and quantize kv cache
inputs = input_ids if input_ids is not None else inputs_embeds
use_cache = True if inputs.device.type == "xpu" else use_cache
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs)
if use_cache:
if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
# IPEX-LLM OPT end

return_dict = return_dict if return_dict is not None else self.config.use_return_dict

invalidInputError((input_ids is None) ^ (inputs_embeds is None),
"You cannot specify both input_ids and inputs_embeds at the same time, "
"and must specify either one")

if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)

if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device)

# the hard coded `3` is for temporal, height and width.
if position_ids is None:
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
elif position_ids.dim() == 2:
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)

causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)

hidden_states = inputs_embeds

return Qwen2VLModel.forward(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)

# IPEX-LLM OPT start: use fused 2D rope
if (torch.equal(position_ids[0], position_ids[1])
and torch.equal(position_ids[0], position_ids[2])
and should_use_fuse_rope(hidden_states, position_ids, False)):
position_ids = position_ids[0].contiguous()
position_embeddings = self.rotary_emb.inv_freq
# IEPX_LLM OPT end

# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None

for decoder_layer in self.layers:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)

hidden_states = layer_outputs[0]

if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]

if output_attentions:
all_self_attns += (layer_outputs[1],)

hidden_states = self.norm(hidden_states)

# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)

next_cache = next_decoder_cache if use_cache else None

if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)


Expand All @@ -117,19 +194,23 @@ def qwen2_vl_attention_forward(
self.num_key_value_heads,
self.num_key_value_heads], dim=1)

if position_embeddings is None:
cos, sin = self.rotary_emb(value_states, position_ids)
if position_ids.dim() == 2:
import xe_addons
inv_freq = position_embeddings
xe_addons.rotary_half_inplaced(inv_freq, position_ids, query_states, key_states)
else:
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)
if position_embeddings is None:
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)

kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs)
self.layer_idx, None)
kv_seq_len = key_states.shape[-2]

attn_weights = None
Expand Down