Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 20 additions & 7 deletions python/test/unit/intel/test_block_io.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,9 +119,9 @@ def warps_per_cta(layout):
@pytest.mark.parametrize("dtype_str", ["float32", "float16", "int8"])
@pytest.mark.parametrize("layout", layouts)
@pytest.mark.parametrize("load_block_ptr, store_block_ptr", [(True, True), (False, False), (True, False),
(False, True)])
@pytest.mark.parametrize("transpose", [True, False]) (False, True)])
@pytest.mark.skipif(not is_xpu(), reason="Block store tests are specific to the XPU backend")
def test_block_io(M, N, dtype_str, layout, load_block_ptr, store_block_ptr, device, tmp_path: pathlib.Path):
def test_block_io(M, N, dtype_str, layout, load_block_ptr, store_block_ptr, transpose, device, tmp_path: pathlib.Path):

warps = warps_per_cta(layout)
num_warps = int(np.prod(warps))
Expand All @@ -132,16 +132,18 @@ def test_block_io(M, N, dtype_str, layout, load_block_ptr, store_block_ptr, devi

support_block_io = torch.xpu.get_device_capability()['has_subgroup_2d_block_io']

block_io = "\"column_major\"" if transpose else "\"row_major\""

if load_block_ptr:
load_ops = f"""
%src_ptr = tt.make_tensor_ptr %src, [%M_i64, %N_i64], [%N_i64, %c1_i64], [%c0_i32, %c0_i32] {{order = array<i32: 1, 0>}} : <tensor<{M}x{N}x{ty}, #layout>>
%store_val = tt.load %src_ptr {{ttig.block_io = "row_major", boundaryCheck = array<i32: 0, 1>, padding = 1 : i32}} : !tt.ptr<tensor<{M}x{N}x{ty}, #layout>>
%src_ptr = tt.make_tensor_ptr %src, [%M_i64, %N_i64], {"[%c1_i64, %M_i64]" if transpose else "[%N_i64, %c1_i64]"}, [%c0_i32, %c0_i32] {{order = array<i32: 1, 0>}} : <tensor<{M}x{N}x{ty}, #layout>>
%store_val = tt.load %src_ptr {{ttig.block_io = {block_io}, boundaryCheck = array<i32: 0, 1>, padding = 1 : i32}} : !tt.ptr<tensor<{M}x{N}x{ty}, #layout>>
"""
else:
load_ops = f"""
%src_base = tt.splat %src : !tt.ptr<{ty}> -> tensor<{M}x{N}x!tt.ptr<{ty}>, #layout>
%src_ptr = tt.addptr %src_base, %row_major_off : tensor<{M}x{N}x!tt.ptr<{ty}>, #layout>, tensor<{M}x{N}xi32, #layout>
%store_val = tt.load %src_ptr {{ttig.block_io = "row_major"}} : tensor<{M}x{N}x!tt.ptr<{ty}>, #layout>
%src_ptr = tt.addptr %src_base, {"%col_major_off" if transpose else "%row_major_off" } : tensor<{M}x{N}x!tt.ptr<{ty}>, #layout>, tensor<{M}x{N}xi32, #layout>
%store_val = tt.load %src_ptr {{ttig.block_io = {block_io}}} : tensor<{M}x{N}x!tt.ptr<{ty}>, #layout>
"""
if store_block_ptr:
store_ops = f"""
Expand All @@ -164,7 +166,6 @@ def test_block_io(M, N, dtype_str, layout, load_block_ptr, store_block_ptr, devi
%N_i64 = arith.constant {N} : i64
%c1_i64 = arith.constant 1 : i64
%c0_i32 = arith.constant 0 : i32

%stride_N = arith.constant dense<{N}> : tensor<{M}x1xi32, #layout>
%1 = tt.make_range {{end = {M} : i32, start = 0 : i32}} : tensor<{M}xi32, #ttg.slice<{{dim = 1, parent = #layout}}>>
%2 = tt.expand_dims %1 {{axis = 1 : i32}} : tensor<{M}xi32, #ttg.slice<{{dim = 1, parent = #layout}}>> -> tensor<{M}x1xi32, #layout>
Expand All @@ -175,6 +176,14 @@ def test_block_io(M, N, dtype_str, layout, load_block_ptr, store_block_ptr, devi
%7 = tt.broadcast %5 : tensor<1x{N}xi32, #layout> -> tensor<{M}x{N}xi32, #layout>
%row_major_off = arith.addi %6, %7 : tensor<{M}x{N}xi32, #layout>


%stride_M = arith.constant dense<{M}> : tensor<1x{N}xi32, #layout>
%col_stride = arith.muli %5, %stride_M : tensor<1x{N}xi32, #layout>
%8 = tt.broadcast %2 : tensor<{M}x1xi32, #layout> -> tensor<{M}x{N}xi32, #layout>
%9 = tt.broadcast %col_stride : tensor<1x{N}xi32, #layout> -> tensor<{M}x{N}xi32, #layout>
%col_major_off = arith.addi %8, %9 : tensor<{M}x{N}xi32, #layout>
{load_ops}

{load_ops}
{store_ops}

Expand All @@ -195,10 +204,14 @@ def test_block_io(M, N, dtype_str, layout, load_block_ptr, store_block_ptr, devi
temp_file.write_text(ir)
kernel = triton.compile(str(temp_file))

a = a.permute(1, 0).contiguous().permute(1, 0) if transpose else a

kernel[(1, 1, 1)](a, x)
assert torch.equal(a, x)

if support_block_io:
if not load_block_ptr:
assert 'spirv_Subgroup2DBlockLoad' in kernel.asm['llir'] or 'GenISA.LSC2DBlockRead' in kernel.asm['llir']
assert 'spirv_Subgroup2DBlockStoreINTEL' in kernel.asm['llir'] or 'GenISA.LSC2DBlockWrite' in kernel.asm['llir']
if not block_ptr:
assert 'spirv_Subgroup2DBlockLoad' in kernel.asm['llir'] or 'GenISA.LSC2DBlockRead' in kernel.asm['llir']
Loading
Loading