Skip to content

Notebooks for Diffuser Community Scripts-8 #559

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 20, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
155 changes: 155 additions & 0 deletions diffusers/composable_stable_diffusion.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Composable Stable diffusion\n",
"\n",
"[Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) proposes conjunction and negation (negative prompts) operators for compositional generation with conditional diffusion models. This script was contributed by [MarkRich](https://github.com/MarkRich) and the notebook by [Parag Ekbote](https://github.com/ParagEkbote)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pip install torch numpy torchvision diffusers"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3dadcf1262e0492cafe9556f62ba3a9f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"composable_stable_diffusion.py: 0%| | 0.00/27.6k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "279a467d562041ec935edacbf177caba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"composing ['mystical trees', 'A magical pond', 'dark']...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3717298308004b648b65d6c1b1e02dbe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/50 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved successfully!\n"
]
}
],
"source": [
"import torch as th\n",
"import numpy as np\n",
"import torchvision.utils as tvu\n",
"from diffusers import DiffusionPipeline\n",
"import argparse\n",
"import sys\n",
"\n",
"# Simulate passing arguments explicitly (bypassing Jupyter's arguments)\n",
"sys.argv = [\n",
" \"ipykernel_launcher.py\", \n",
" \"--prompt\", \"mystical trees | A magical pond | dark\",\n",
" \"--steps\", \"50\",\n",
" \"--scale\", \"7.5\",\n",
" \"--weights\", \"7.5 | 7.5 | -7.5\",\n",
" \"--seed\", \"2\",\n",
" \"--model_path\", \"CompVis/stable-diffusion-v1-4\",\n",
" \"--num_images\", \"1\"\n",
"]\n",
"\n",
"parser = argparse.ArgumentParser()\n",
"parser.add_argument(\"--prompt\", type=str, default=\"mystical trees | A magical pond | dark\",\n",
" help=\"use '|' as the delimiter to compose separate sentences.\")\n",
"parser.add_argument(\"--steps\", type=int, default=50)\n",
"parser.add_argument(\"--scale\", type=float, default=7.5)\n",
"parser.add_argument(\"--weights\", type=str, default=\"7.5 | 7.5 | -7.5\")\n",
"parser.add_argument(\"--seed\", type=int, default=2)\n",
"parser.add_argument(\"--model_path\", type=str, default=\"CompVis/stable-diffusion-v1-4\")\n",
"parser.add_argument(\"--num_images\", type=int, default=1)\n",
"args = parser.parse_args()\n",
"\n",
"# CUDA Setup\n",
"has_cuda = th.cuda.is_available()\n",
"device = th.device('cpu' if not has_cuda else 'cuda')\n",
"\n",
"# Assign parameters\n",
"prompt = args.prompt\n",
"scale = args.scale\n",
"steps = args.steps\n",
"\n",
"# Load pipeline\n",
"pipe = DiffusionPipeline.from_pretrained(\n",
" args.model_path,\n",
" custom_pipeline=\"composable_stable_diffusion\",\n",
").to(device)\n",
"\n",
"# Disable safety checker (if intentional for internal use)\n",
"pipe.safety_checker = None\n",
"\n",
"# Generate images\n",
"images = []\n",
"generator = th.Generator(\"cuda\").manual_seed(args.seed)\n",
"for i in range(args.num_images):\n",
" image = pipe(prompt, guidance_scale=scale, num_inference_steps=steps,\n",
" weights=args.weights, generator=generator).images[0]\n",
" images.append(th.from_numpy(np.array(image)).permute(2, 0, 1) / 255.)\n",
"\n",
"# Create and save image grid\n",
"grid = tvu.make_grid(th.stack(images, dim=0), nrow=4, padding=0)\n",
"tvu.save_image(grid, f'{prompt}_{args.weights}.png')\n",
"\n",
"print(\"Image saved successfully!\")\n"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
123 changes: 123 additions & 0 deletions diffusers/image_to_image_inpainting_stable_diffusion.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Image to Image Inpainting Stable Diffusion\n",
"\n",
"Similar to the standard stable diffusion inpainting example, except with the addition of an `inner_image` argument.\n",
"\n",
"`image`, `inner_image`, and `mask` should have the same dimensions. `inner_image` should have an alpha (transparency) channel.\n",
"\n",
"The aim is to overlay two images, then mask out the boundary between `image` and `inner_image` to allow stable diffusion to make the connection more seamless. For example, this could be used to place a logo on a shirt and make it blend seamlessly.This script was contributed by [Alex McKinney](https://github.com/vvvm23) and the notebook by [Parag Ekbote](https://github.com/ParagEkbote)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pip install diffusers torch"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0b56a945eb5145598c4fd153bc658786",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"An error occurred while trying to fetch /home/zeus/.cache/huggingface/hub/models--stable-diffusion-v1-5--stable-diffusion-inpainting/snapshots/8a4288a76071f7280aedbdb3253bdb9e9d5d84bb/unet: Error no file named diffusion_pytorch_model.safetensors found in directory /home/zeus/.cache/huggingface/hub/models--stable-diffusion-v1-5--stable-diffusion-inpainting/snapshots/8a4288a76071f7280aedbdb3253bdb9e9d5d84bb/unet.\n",
"Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"An error occurred while trying to fetch /home/zeus/.cache/huggingface/hub/models--stable-diffusion-v1-5--stable-diffusion-inpainting/snapshots/8a4288a76071f7280aedbdb3253bdb9e9d5d84bb/vae: Error no file named diffusion_pytorch_model.safetensors found in directory /home/zeus/.cache/huggingface/hub/models--stable-diffusion-v1-5--stable-diffusion-inpainting/snapshots/8a4288a76071f7280aedbdb3253bdb9e9d5d84bb/vae.\n",
"Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cfa34d5822784b449f9014f3f1b0e4ef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/50 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import torch\n",
"import requests\n",
"from PIL import Image\n",
"from io import BytesIO\n",
"from diffusers import DiffusionPipeline\n",
"\n",
"# Correct image URLs\n",
"image_url = \"https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png\"\n",
"inner_image_url = \"https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png\"\n",
"mask_url = \"https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png\"\n",
"\n",
"# Function to load image from URL\n",
"def load_image(url, mode=\"RGB\"):\n",
" response = requests.get(url)\n",
" if response.status_code == 200:\n",
" return Image.open(BytesIO(response.content)).convert(mode).resize((512, 512))\n",
" else:\n",
" raise FileNotFoundError(f\"Could not retrieve image from {url}\")\n",
"\n",
"# Load images\n",
"init_image = load_image(image_url, mode=\"RGB\")\n",
"inner_image = load_image(inner_image_url, mode=\"RGBA\")\n",
"mask_image = load_image(mask_url, mode=\"RGB\")\n",
"\n",
"# Load the pipeline\n",
"pipe = DiffusionPipeline.from_pretrained(\n",
" \"stable-diffusion-v1-5/stable-diffusion-inpainting\",\n",
" custom_pipeline=\"img2img_inpainting\",\n",
" torch_dtype=torch.float16\n",
")\n",
"pipe = pipe.to(\"cuda\")\n",
"\n",
"# Inpainting\n",
"prompt = \"a mecha robot sitting on a bench\"\n",
"image = pipe(prompt=prompt, image=init_image, inner_image=inner_image, mask_image=mask_image).images[0]\n",
"\n",
"image.save(\"output.png\")\n"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading