Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -630,11 +630,7 @@ def __call__(
)

# 4. Preprocess mask and image
if isinstance(image, PIL.Image.Image) and isinstance(mask_image, PIL.Image.Image):
mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
else:
mask = mask_image
masked_image = image * (mask < 0.5)
mask, masked_image = prepare_mask_and_masked_image(image, mask_image)

# 5. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
Expand Down
58 changes: 58 additions & 0 deletions tests/pipelines/stable_diffusion/test_stable_diffusion_inpaint.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,6 +218,64 @@ def test_stable_diffusion_inpaint(self):
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

def test_stable_diffusion_inpaint_image_tensor(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet_inpaint
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

image = self.dummy_image.repeat(1, 1, 2, 2)
mask_image = image / 2

# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)

prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=image,
mask_image=mask_image[:, 0],
)
out_1 = output.images

image = image.cpu().permute(0, 2, 3, 1)[0]
mask_image = mask_image.cpu().permute(0, 2, 3, 1)[0]

image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB")

generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=image,
mask_image=mask_image,
)
out_2 = output.images

assert out_1.shape == (1, 64, 64, 3)
assert np.abs(out_1.flatten() - out_2.flatten()).max() < 5e-2

def test_stable_diffusion_inpaint_with_num_images_per_prompt(self):
device = "cpu"
unet = self.dummy_cond_unet_inpaint
Expand Down