Skip to content
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions requirements/requirements-compare-llama-bench.txt
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
tabulate~=0.9.0
GitPython~=3.1.43
matplotlib~=3.10.0
169 changes: 168 additions & 1 deletion scripts/compare-llama-bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100
raise e


logger = logging.getLogger("compare-llama-bench")

# All llama-bench SQL fields
Expand Down Expand Up @@ -122,11 +123,15 @@
parser.add_argument("--check", action="store_true", help="check if all required Python libraries are installed")
parser.add_argument("-s", "--show", help=help_s)
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
parser.add_argument("--plot", help="generate a performance comparison plot and save to specified file (e.g., plot.png)")
parser.add_argument("--plot_x", help="parameter to use as x axis for plotting (default: n_depth)", default="n_depth")
parser.add_argument("--plot_log_scale", action="store_true", help="use log scale for x axis in plots (off by default)")

known_args, unknown_args = parser.parse_known_args()

logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)


if known_args.check:
# Check if all required Python libraries are installed. Would have failed earlier if not.
sys.exit(0)
Expand Down Expand Up @@ -499,7 +504,6 @@ def valid_format(data_files: list[str]) -> bool:

name_compare = bench_data.get_commit_name(hexsha8_compare)


# If the user provided columns to group the results by, use them:
if known_args.show is not None:
show = known_args.show.split(",")
Expand Down Expand Up @@ -544,6 +548,14 @@ def valid_format(data_files: list[str]) -> bool:
show.remove(prop)
except ValueError:
pass

# Add plot_x parameter to parameters to show if it's not already present:
if known_args.plot:
for k, v in PRETTY_NAMES.items():
if v == known_args.plot_x and k not in show:
show.append(k)
break

rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)

if not rows_show:
Expand Down Expand Up @@ -600,6 +612,161 @@ def valid_format(data_files: list[str]) -> bool:
headers = [PRETTY_NAMES[p] for p in show]
headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]

if known_args.plot:
def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False):
try:
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')
except ImportError as e:
logger.error("matplotlib is required for --plot.")
raise e

data_headers = headers[:-4] # Exclude the last 4 columns (Test, baseline t/s, compare t/s, Speedup)
plot_x_index = None
plot_x_label = plot_x_param

if plot_x_param not in ["n_prompt", "n_gen", "n_depth"]:
pretty_name = PRETTY_NAMES.get(plot_x_param, plot_x_param)
if pretty_name in data_headers:
plot_x_index = data_headers.index(pretty_name)
plot_x_label = pretty_name
elif plot_x_param in data_headers:
plot_x_index = data_headers.index(plot_x_param)
plot_x_label = plot_x_param
else:
logger.error(f"Parameter '{plot_x_param}' not found in current table columns. Available columns: {', '.join(data_headers)}")
return

grouped_data = {}

for i, row in enumerate(table_data):
group_key_parts = []
test_name = row[-4]

base_test = ""
x_value = None

if plot_x_param in ["n_prompt", "n_gen", "n_depth"]:
for j, val in enumerate(row[:-4]):
header_name = data_headers[j]
if val is not None and str(val).strip():
group_key_parts.append(f"{header_name}={val}")

if plot_x_param == "n_prompt" and "pp" in test_name:
base_test = test_name.split("@")[0]
x_value = base_test
elif plot_x_param == "n_gen" and "tg" in test_name:
x_value = test_name.split("@")[0]
elif plot_x_param == "n_depth" and "@d" in test_name:
base_test = test_name.split("@d")[0]
x_value = int(test_name.split("@d")[1])
else:
base_test = test_name

if base_test.strip():
group_key_parts.append(f"Test={base_test}")
else:
for j, val in enumerate(row[:-4]):
if j != plot_x_index:
header_name = data_headers[j]
if val is not None and str(val).strip():
group_key_parts.append(f"{header_name}={val}")
else:
x_value = val

group_key_parts.append(f"Test={test_name}")

group_key = tuple(group_key_parts)

if group_key not in grouped_data:
grouped_data[group_key] = []

grouped_data[group_key].append({
'x_value': x_value,
'baseline': float(row[-3]),
'compare': float(row[-2]),
'speedup': float(row[-1])
})

if not grouped_data:
logger.error("No data available for plotting")
return

def make_axes(num_groups, max_cols=2, base_size=(8, 4)):
from math import ceil
cols = 1 if num_groups == 1 else min(max_cols, num_groups)
rows = ceil(num_groups / cols)

# Scale figure size by grid dimensions
w, h = base_size
fig, ax_arr = plt.subplots(rows, cols,
figsize=(w * cols, h * rows),
squeeze=False)

axes = ax_arr.flatten()[:num_groups]
return fig, axes

num_groups = len(grouped_data)
fig, axes = make_axes(num_groups)

plot_idx = 0

for group_key, points in grouped_data.items():
if plot_idx >= len(axes):
break
ax = axes[plot_idx]

try:
points_sorted = sorted(points, key=lambda p: float(p['x_value']) if p['x_value'] is not None else 0)
x_values = [float(p['x_value']) if p['x_value'] is not None else 0 for p in points_sorted]
except ValueError:
points_sorted = sorted(points, key=lambda p: group_key)
x_values = [p['x_value'] for p in points_sorted]

baseline_vals = [p['baseline'] for p in points_sorted]
compare_vals = [p['compare'] for p in points_sorted]

ax.plot(x_values, baseline_vals, 'o-', color='skyblue',
label=f'{baseline_name}', linewidth=2, markersize=6)
ax.plot(x_values, compare_vals, 's--', color='lightcoral', alpha=0.8,
label=f'{compare_name}', linewidth=2, markersize=6)

if log_scale and min(x_values) > 0:
ax.set_xscale('log', base=2)
unique_x = sorted(set(x_values))
ax.set_xticks(unique_x)
ax.set_xticklabels([str(int(x)) for x in unique_x])

title_parts = []
for part in group_key:
if '=' in part:
key, value = part.split('=', 1)
title_parts.append(f"{key}: {value}")

title = ', '.join(title_parts) if title_parts else "Performance comparison"

ax.set_xlabel(plot_x_label, fontsize=12, fontweight='bold')
ax.set_ylabel('Tokens per second (t/s)', fontsize=12, fontweight='bold')
ax.set_title(title, fontsize=12, fontweight='bold')
ax.legend(loc='best', fontsize=10)
ax.grid(True, alpha=0.3)

plot_idx += 1

for i in range(plot_idx, len(axes)):
axes[i].set_visible(False)

fig.suptitle(f'Performance comparison: {compare_name} vs. {baseline_name}',
fontsize=14, fontweight='bold')
fig.subplots_adjust(top=1)

plt.tight_layout()
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()

create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale)

print(tabulate( # noqa: NP100
table,
headers=headers,
Expand Down