-
Notifications
You must be signed in to change notification settings - Fork 701
Open
Description
I want to construct my own sequnce data captured by cameras mounted on a vehicle.
I use the script in pipelines/reconstruction.py
steps:
- I prepared 2500 images with size of 1280 * 720, extract NetVLAD vectors, get 20 paris from retrieval for every image.
global_descriptors = extract_features.main(retrieval_conf, dataset, outputs)
pairs_from_retrieval.main(
global_descriptors, sfm_pairs, 20,
query_list= images, db_list= images, db_descriptors= global_descriptors)
- I extract the Superpoint and match by NN.
'superpoint_zgc': {
'output': 'feats-superpoint-n4096-r1024',
'model': {
'name': 'superpoint',
'nms_radius': 3,
'max_keypoints': 4096,
},
'preprocessing': {
'grayscale': True,
'resize_max': 1280,
},
},
'NN-superpoint': {
'output': 'matches-NN-mutual-dist.7',
'model': {
'name': 'nearest_neighbor',
'do_mutual_check': True,
'distance_threshold': 0.7,
},
- Then I construct with single camera.
reconstruction.main(sfm_dir, dataset, sfm_pairs, feature_path, match_path,
colmap_path= 'colmap/build/src/exe/colmap', single_camera= True)
But I get the output, it seems that very few images were used or stored in bin file. And I get 7 sub-models with small size.
Elapsed time: 904.367 [minutes]
[12/29/2021 08:55:22 INFO] Reconstructed 7 models.
[12/29/2021 08:55:22 INFO] Largest model is #0 with 1 images.
[12/29/2021 08:55:22 INFO] Statistics:
{'mean_reproj_error': 1.312922,
'mean_track_length': 6.724747,
'num_input_images': 2569,
'num_observations': 34619,
'num_observations_per_image': 2884.916667,
'num_reg_images': 12,
'num_sparse_points': 5148}
Compared to the output of Aachen dataset.
[11/24/2021 16:03:11 INFO] Statistics:
{'mean_reproj_error': 1.322519,
'mean_track_length': 5.709355,
'num_observations': 5203032,
'num_observations_per_image': 1202.179298,
'num_reg_images': 4328,
'num_sparse_points': 911317}
And my result with my own data cause the wrong localization and query image retrieval.
Looking forward to your reply! Thanks sincerely.
Metadata
Metadata
Assignees
Labels
No labels