Skip to content

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Jan 24, 2025

📄 31% (0.31x) speedup for Representation.__repr_args__ in pydantic/_internal/_repr.py

⏱️ Runtime : 21.7 microseconds 16.5 microseconds (best of 347 runs)

📝 Explanation and details

To optimize the Representation class method __repr_args__ for improved performance, we can make the following changes.

  1. Avoid using intermediate lists.

    • Instead of using a generator to create a tuple and then converting it into a list, we can directly filter and create the list using a generator expression.
  2. Use dictionary access more efficiently.

    • We use .items() method of the dictionary directly if __dict__ is available, instead of using .keys() and then getattr.

Here's the optimized code.

What was changed.

  1. Efficient __slots__ check.

    • Check if __slots__ is empty and branch directly whether to use __dict__ or __slots__.
  2. Dictionary Access Optimization.

    • Use self.__dict__.items() directly for name-value pairs, avoiding the need to get keys and fetch values individually.

By condensing list creation steps, we reduce overhead and unnecessary iterations, making the function more efficient.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 16 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import typing
from typing import Any

# imports
import pytest  # used for our unit tests
from pydantic._internal._repr import Representation

# unit tests

# Basic Functionality
def test_empty_class():
    class EmptyClass(Representation):
        __slots__ = ()
    instance = EmptyClass()
    codeflash_output = instance.__repr_args__()

def test_single_attribute_slots():
    class SingleAttr(Representation):
        __slots__ = ('attr',)
        def __init__(self, attr):
            self.attr = attr
    instance = SingleAttr('value')
    codeflash_output = instance.__repr_args__()

def test_single_attribute_dict():
    class SingleAttrDict(Representation):
        def __init__(self, attr):
            self.attr = attr
    instance = SingleAttrDict('value')
    codeflash_output = instance.__repr_args__()

# Multiple Attributes
def test_multiple_attributes_slots():
    class MultipleAttrs(Representation):
        __slots__ = ('attr1', 'attr2', 'attr3')
        def __init__(self, attr1, attr2, attr3):
            self.attr1 = attr1
            self.attr2 = attr2
            self.attr3 = attr3
    instance = MultipleAttrs('value1', 'value2', 'value3')
    codeflash_output = instance.__repr_args__()

def test_multiple_attributes_dict():
    class MultipleAttrsDict(Representation):
        def __init__(self, attr1, attr2, attr3):
            self.attr1 = attr1
            self.attr2 = attr2
            self.attr3 = attr3
    instance = MultipleAttrsDict('value1', 'value2', 'value3')
    codeflash_output = instance.__repr_args__()

# Inheritance
def test_single_inheritance():
    class Base(Representation):
        __slots__ = ('base_attr',)
        def __init__(self, base_attr):
            self.base_attr = base_attr
    class SubClass(Base):
        __slots__ = ('sub_attr',)
        def __init__(self, base_attr, sub_attr):
            super().__init__(base_attr)
            self.sub_attr = sub_attr
    instance = SubClass('base_value', 'sub_value')
    codeflash_output = instance.__repr_args__()

def test_multiple_inheritance():
    class Mixin:
        __slots__ = ('mixin_attr',)
        def __init__(self, mixin_attr):
            self.mixin_attr = mixin_attr
    class Combined(Representation, Mixin):
        __slots__ = ('combined_attr',)
        def __init__(self, mixin_attr, combined_attr):
            Mixin.__init__(self, mixin_attr)
            self.combined_attr = combined_attr
    instance = Combined('mixin_value', 'combined_value')
    codeflash_output = instance.__repr_args__()

# Edge Cases
def test_special_characters():
    class SpecialChars(Representation):
        __slots__ = ('attr_with_space', 'attr_with_special_char')
        def __init__(self, attr_with_space, attr_with_special_char):
            self.attr_with_space = attr_with_space
            self.attr_with_special_char = attr_with_special_char
    instance = SpecialChars('value with space', 'value_with_special_char@!')
    codeflash_output = instance.__repr_args__()

def test_non_string_values():
    class NonStringValues(Representation):
        __slots__ = ('int_attr', 'list_attr', 'dict_attr')
        def __init__(self, int_attr, list_attr, dict_attr):
            self.int_attr = int_attr
            self.list_attr = list_attr
            self.dict_attr = dict_attr
    instance = NonStringValues(123, [1, 2, 3], {'key': 'value'})
    codeflash_output = instance.__repr_args__()

# Performance and Scalability
def test_large_number_of_attributes():
    class LargeNumberOfAttrs(Representation):
        __slots__ = [f'attr{i}' for i in range(100)]
        def __init__(self):
            for i in range(100):
                setattr(self, f'attr{i}', f'value{i}')
    instance = LargeNumberOfAttrs()
    expected = [(f'attr{i}', f'value{i}') for i in range(100)]
    codeflash_output = instance.__repr_args__()

def test_large_data_structures():
    class LargeDataStructures(Representation):
        __slots__ = ('large_list', 'large_dict')
        def __init__(self, large_list, large_dict):
            self.large_list = large_list
            self.large_dict = large_dict
    large_list = list(range(1000))
    large_dict = {f'key{i}': f'value{i}' for i in range(1000)}
    instance = LargeDataStructures(large_list, large_dict)
    codeflash_output = instance.__repr_args__()

# Pretty Printing and Rich Representation
def test_pretty_printing():
    class PrettyPrintTest(Representation):
        __slots__ = ('attr1', 'attr2')
        def __init__(self, attr1, attr2):
            self.attr1 = attr1
            self.attr2 = attr2
    instance = PrettyPrintTest('value1', 'value2')
    fmt = lambda x: f'formatted_{x}'
    pretty_output = list(instance.__pretty__(fmt))
    expected_output = [
        'PrettyPrintTest(', 1, 'attr1=', 'formatted_value1', ',', 0,
        'attr2=', 'formatted_value2', ',', 0, -1, ')'
    ]

def test_rich_repr():
    class RichReprTest(Representation):
        __slots__ = ('attr1', 'attr2')
        def __init__(self, attr1, attr2):
            self.attr1 = attr1
            self.attr2 = attr2
    instance = RichReprTest('value1', 'value2')
    rich_output = list(instance.__rich_repr__())
    expected_output = [('attr1', 'value1'), ('attr2', 'value2')]

# Deterministic Behavior
def test_consistent_output():
    class ConsistentOutput(Representation):
        __slots__ = ('attr1', 'attr2')
        def __init__(self, attr1, attr2):
            self.attr1 = attr1
            self.attr2 = attr2
    instance = ConsistentOutput('value1', 'value2')

# Error Handling
def test_invalid_attribute_names():
    class InvalidAttrNames(Representation):
        __slots__ = ('__repr__', '__str__')
        def __init__(self, repr_value, str_value):
            self.__repr__ = repr_value
            self.__str__ = str_value
    instance = InvalidAttrNames('repr_value', 'str_value')
    codeflash_output = instance.__repr_args__()


def test_custom_repr_args():
    class CustomReprArgs(Representation):
        __slots__ = ('attr1', 'attr2', 'attr3')
        def __init__(self, attr1, attr2, attr3):
            self.attr1 = attr1
            self.attr2 = attr2
            self.attr3 = attr3
        def __repr_args__(self):
            return [('custom_attr1', self.attr1), ('custom_attr2', self.attr2)]
    instance = CustomReprArgs('value1', 'value2', 'value3')
    codeflash_output = instance.__repr_args__()

📢 Feedback on this optimization? Discord

To optimize the `Representation` class method `__repr_args__` for improved performance, we can make the following changes.

1. **Avoid using intermediate lists**.
    - Instead of using a generator to create a tuple and then converting it into a list, we can directly filter and create the list using a generator expression.

2. **Use dictionary access more efficiently**.
    - We use `.items()` method of the dictionary directly if `__dict__` is available, instead of using `.keys()` and then `getattr`.

Here's the optimized code.



### What was changed.

1. **Efficient `__slots__` check**.
    - Check if `__slots__` is empty and branch directly whether to use `__dict__` or `__slots__`.

2. **Dictionary Access Optimization**.
    - Use `self.__dict__.items()` directly for name-value pairs, avoiding the need to get keys and fetch values individually.

By condensing list creation steps, we reduce overhead and unnecessary iterations, making the function more efficient.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jan 24, 2025
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 January 24, 2025 06:46
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI relnotes-fix

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants