Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 14 additions & 15 deletions src/acquisition/covidcast/signal_dash_data_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import pandas as pd

from dataclasses import dataclass
from epiweeks import Week
from typing import List

# first party
Expand All @@ -17,7 +18,9 @@
from delphi.epidata.acquisition.covidcast.logger import get_structured_logger


LOOKBACK_DAYS_FOR_COVERAGE = 28
LOOKBACK_DAYS_FOR_COVERAGE = 56
BASE_COVIDCAST = covidcast.covidcast.Epidata.BASE_URL[:-len("api.php")] + "covidcast"
COVERAGE_URL = f"{BASE_COVIDCAST}/coverage?format=csv&signal={{source}}:{{signal}}&days={LOOKBACK_DAYS_FOR_COVERAGE}"

@dataclass
class DashboardSignal:
Expand Down Expand Up @@ -195,27 +198,23 @@ def get_latest_time_value_from_metadata(dashboard_signal, metadata):
def get_coverage(dashboard_signal: DashboardSignal,
metadata) -> List[DashboardSignalCoverage]:
"""Get the most recent coverage for the signal."""
latest_time_value = get_latest_time_value_from_metadata(
dashboard_signal, metadata)
start_day = latest_time_value - datetime.timedelta(days = LOOKBACK_DAYS_FOR_COVERAGE)
latest_data = covidcast.signal(
dashboard_signal.source,
dashboard_signal.covidcast_signal,
end_day = latest_time_value,
start_day = start_day)
latest_data_without_megacounties = latest_data[~latest_data['geo_value'].str.endswith(
'000')]
count_by_geo_type_df = latest_data_without_megacounties.groupby(
['geo_type', 'data_source', 'time_value', 'signal']).size().to_frame(
'count').reset_index()
count_by_geo_type_df = pd.read_csv(
COVERAGE_URL.format(source=dashboard_signal.source,
signal=dashboard_signal.covidcast_signal))
try:
count_by_geo_type_df["time_value"] = count_by_geo_type_df["time_value"].apply(
lambda x: pd.to_datetime(str(x), format="%Y%m%d"))
except:
count_by_geo_type_df["time_value"] = count_by_geo_type_df["time_value"].apply(
lambda x: pd.to_datetime(Week(x // 100, x % 100).startdate()))

signal_coverage_list = []

for _, row in count_by_geo_type_df.iterrows():
signal_coverage = DashboardSignalCoverage(
signal_id=dashboard_signal.db_id,
date=row['time_value'].date(),
geo_type=row['geo_type'],
geo_type='county',
count=row['count'])
signal_coverage_list.append(signal_coverage)

Expand Down
60 changes: 7 additions & 53 deletions tests/acquisition/covidcast/test_signal_dash_data_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -182,7 +182,8 @@ def test_get_latest_time_value_from_metadata(self):
data_date = get_latest_time_value_from_metadata(signal, metadata)
self.assertEqual(data_date, date(2021, 1, 1))

@patch("covidcast.signal")
#@patch("covidcast.signal")
@patch("pandas.read_csv")
def test_get_coverage(self, mock_signal):
signal = DashboardSignal(
db_id=1, name="Change", source="chng",
Expand All @@ -198,18 +199,16 @@ def test_get_coverage(self, mock_signal):
'signal'])

epidata_data = [
['chng', 'chng-sig', pd.Timestamp("2020-01-01"), "state", "PA"],
['chng', 'chng-sig', pd.Timestamp("2020-01-01"), "state", "NY"],
['chng', 'chng-sig', pd.Timestamp("2020-01-02"), "state", "NY"],
['chng', 'chng-sig', 20200101, 2],
['chng', 'chng-sig', 20200102, 1],
]
epidata_df = pd.DataFrame(
epidata_data,
columns=[
'data_source',
'source',
'signal',
'time_value',
'geo_type',
'geo_value'])
'count'])

mock_signal.return_value = epidata_df

Expand All @@ -222,59 +221,14 @@ def test_get_coverage(self, mock_signal):
2020,
1,
1),
geo_type='state',
geo_type='county',
count=2),
DashboardSignalCoverage(
signal_id=1,
date=date(
2020,
1,
2),
geo_type='state',
count=1),
]

self.assertListEqual(coverage, expected_coverage)

@patch("covidcast.signal")
def test_get_coverage_megacounties_dropped(self, mock_signal):
signal = DashboardSignal(
db_id=1, name="Change", source="chng",
covidcast_signal="chng-sig",
latest_coverage_update=date(2021, 1, 1),
latest_status_update=date(2021, 1, 1))
data = [['chng', pd.Timestamp("2020-01-01"), "chng-sig"]]
metadata = pd.DataFrame(
data,
columns=[
'data_source',
'max_time',
'signal'])

epidata_data = [
['chng', 'chng-sig', pd.Timestamp("2020-01-01"), "county", "11111"],
['chng', 'chng-sig', pd.Timestamp("2020-01-01"), "county", "10000"],
]
epidata_df = pd.DataFrame(
epidata_data,
columns=[
'data_source',
'signal',
'time_value',
'geo_type',
'geo_value'])

mock_signal.return_value = epidata_df

coverage = get_coverage(signal, metadata)

expected_coverage = [
DashboardSignalCoverage(
signal_id=1,
date=date(
2020,
1,
1),
geo_type='county',
count=1),
]
Expand Down