Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
205 changes: 102 additions & 103 deletions SUMMARY.md
Original file line number Diff line number Diff line change
@@ -1,108 +1,107 @@
# Summary
# Table of contents

* [Introduction to Machine Learning Interviews Book](README.md)
* [Target audience](contents/0-target-audience.md)
* [About the questions](contents/0-about-the-questions.md)
* [About the answers](contents/0-about-the-answers.md)
* [Gaming the interview process](contents/0-gaming-the-interview-process.md)
* [Acknowledgments](contents/0-acknowledgments.md)
* [About the author](contents/0-about-the-author.md)
* [Target audience](contents/0-target-audience.md)
* [About the questions](contents/0-about-the-questions.md)
* [About the answers](contents/0-about-the-answers.md)
* [Gaming the interview process](contents/0-gaming-the-interview-process.md)
* [Acknowledgments](contents/0-acknowledgments.md)
* [About the author](contents/0-about-the-author.md)
* [Part I. Overview](contents/part-i.-overview.md)
* [Chapter 1. Machine learning jobs](contents/chapter-1.-ml-jobs.md)
* [1.1 Different machine learning roles](contents/1.1-different-ml-roles.md)
* [1.1.1 Working in research vs. working in production](contents/1.1.1-working-in-research-vs.-workingin-production.md)
* [1.1.2 Research](contents/1.1.2-research.md)
* [1.1.2.1 Research vs. applied research](contents/1.1.2.1-research-vs.-applied-research.md)
* [1.1.2.2 Research scientist vs. research engineer](contents/1.1.2.2-research-scientist-vs.-research-engineer.md)
* [1.1.3 Production](contents/1.1.3-production.md)
* [1.1.3.1 Production cycle](contents/1.1.3.1-production-cycle.md)
* [1.1.3.2 Machine learning engineer vs. software engineer](contents/1.1.3.2-machine-learning-engineer-vs.-software-engineer.md)
* [1.1.3.3 Machine learning engineer vs. data scientist](contents/1.1.3.3-machine-learning-engineer-vs.-data-scientist.md)
* [1.1.3.4 Other technical roles in ML production](contents/1.1.3.4-other-technical-roles-in-ml-production.md)
* [1.1.3.5 Understanding roles and titles](contents/1.1.3.5-understanding-roles-and-titles.md)
* [1.2 Types of companies](contents/1.2-types-of-companies.md)
* [1.2.1 Applications companies vs. tooling companies](contents/1.2.1-applications-companies-vs.-tooling-companies.md)
* [1.2.2 Enterprise vs. consumer products](contents/1.2.2-enterprise-vs.-consumer-products.md)
* [1.2.3 Startups or big companies](contents/1.2.3-startups-or-big-companies.md)
* [Chapter 2. Machine learning interview process](contents/chapter-2.-machine-learning-interview-process.md)
* [2.1 Understanding the interviewers’ mindset](contents/2.1-understanding-the-interviewers’-mindset.md)
* [2.1.1 What companies want from candidates](contents/2.1.1-what-companies-want-from-candidates.md)
* [2.1.1.1 Technical skills](contents/2.1.1.1-technical-skills.md)
* [2.1.1.2 Non-technical skills](contents/2.1.1.2-non-technical-skills.md)
* [2.1.1.3 What exactly is culture fit?](contents/2.1.1.3-what-exactly-is-culture-fit.md)
* [2.1.1.4 Junior vs senior roles](contents/2.1.1.4-junior-vs-senior-roles.md)
* [2.1.1.5 Do I need a Ph.D. to work in machine learning?](contents/2.1.1.5-do-i-need-a-ph.d.-to-work-in-machine-learning.md)
* [2.1.2 How companies source candidates](contents/2.1.2-how-companies-source-candidates.md)
* [2.1.3 What signals companies look for in candidates](contents/2.1.3-what-signals-companies-look-for-in-candidates.md)
* [2.2 Interview pipeline](contents/2.2-interview-pipeline.md)
* [2.2.1 Common interview formats](contents/2.2.1-common-interview-formats.md)
* [2.2.2 Alternative interview formats](contents/2.2.2-alternative-interview-formats.md)
* [2.2.3 Interviews at big companies vs. at small companies](contents/2.2.3-interviews-at-big-companies-vs.-at-small-companies.md)
* [2.2.4 Interviews for internships vs. for full-time positions](contents/2.2.4-interviews-for-internships-vs.-for-full-time-positions.md)
* [2.3 Types of questions](contents/2.3-types-of-questions.md)
* [2.3.1 Behavioral questions](contents/2.3.1-behavioral-questions.md)
* [2.3.1.1 Background and resume](contents/2.3.1.1-background-and-resume.md)
* [2.3.1.2 Interests](contents/2.3.1.2-interests.md)
* [2.3.1.3 Communication](contents/2.3.1.3-communication.md)
* [2.3.1.4 Personality](contents/2.3.1.4-personality.md)
* [2.3.2 Questions to ask your interviewers](contents/2.3.2-questions-to-ask-your-interviewers.md)
* [2.3.3 Bad interview questions](contents/2.3.3-bad-interview-questions.md)
* [2.4 Red flags](contents/2.4-red-flags.md)
* [2.5 Timeline](contents/2.5-timeline.md)
* [2.6 Understanding your odds](contents/2.6-understanding-your-odds.md)
* [Chapter 3. After an offer](contents/chapter-3.-after-an-offer.md)
* [3.1 Compensation package](contents/3.1-compensation-package.md)
* [3.1.1 Base salary](contents/3.1.1-base-salary.md)
* [3.1.2 Equity grants](contents/3.1.2-equity-grants.md)
* [3.1.3 Bonuses](contents/3.1.3-bonuses.md)
* [3.1.4 Compensation packages at different levels](contents/3.1.4-compensation-packages-at-different-levels.md)
* [3.2 Negotiation](contents/3.2-negotiation.md)
* [3.2.1 Compensation expectations](contents/3.2.1-compensation-expectations.md)
* [3.3 Career progression](contents/3.3-career-progression.md)
* [Chapter 4. Where to start](contents/chapter-4.-where-to-start.md)
* [4.1 How long do I need for my job search?](contents/4.1-how-long-do-i-need-for-my-job-search.md)
* [4.2 How other people did it](contents/4.2-how-other-people-did-it.md)
* [4.3 Resources](contents/4.3-resources.md)
* [4.3.1 Courses](contents/4.3.1-courses.md)
* [4.3.2 Books & articles](contents/4.3.2-books-&-articles.md)
* [4.3.3 Other resources](contents/4.3.3-other-resources.md)
* [4.4 Do’s and don’ts for ML interviews](contents/4.4-do’s-and-don’ts-for-ml-interviews.md)
* [4.4.1 Do’s](contents/4.4.1-do’s.md)
* [4.4.2 Don’ts](contents/4.4.2-don’ts.md)
* [Chapter 1. Machine learning jobs](contents/chapter-1.-ml-jobs.md)
* [1.1 Different machine learning roles](contents/1.1-different-ml-roles.md)
* [1.1.1 Working in research vs. working in production](contents/1.1.1-working-in-research-vs.-workingin-production.md)
* [1.1.2 Research](contents/1.1.2-research.md)
* [1.1.2.1 Research vs. applied research](contents/1.1.2.1-research-vs.-applied-research.md)
* [1.1.2.2 Research scientist vs. research engineer](contents/1.1.2.2-research-scientist-vs.-research-engineer.md)
* [1.1.3 Production](contents/1.1.3-production.md)
* [1.1.3.1 Production cycle](contents/1.1.3.1-production-cycle.md)
* [1.1.3.2 Machine learning engineer vs. software engineer](contents/1.1.3.2-machine-learning-engineer-vs.-software-engineer.md)
* [1.1.3.3 Machine learning engineer vs. data scientist](contents/1.1.3.3-machine-learning-engineer-vs.-data-scientist.md)
* [1.1.3.4 Other technical roles in ML production](contents/1.1.3.4-other-technical-roles-in-ml-production.md)
* [1.1.3.5 Understanding roles and titles](contents/1.1.3.5-understanding-roles-and-titles.md)
* [1.2 Types of companies](contents/1.2-types-of-companies.md)
* [1.2.1 Applications companies vs. tooling companies](contents/1.2.1-applications-companies-vs.-tooling-companies.md)
* [1.2.2 Enterprise vs. consumer products](contents/1.2.2-enterprise-vs.-consumer-products.md)
* [1.2.3 Startups or big companies](contents/1.2.3-startups-or-big-companies.md)
* [Chapter 2. Machine learning interview process](contents/chapter-2.-machine-learning-interview-process.md)
* [2.1 Understanding the interviewers’ mindset](contents/2.1-understanding-the-interviewers’-mindset.md)
* [2.1.1 What companies want from candidates](contents/2.1.1-what-companies-want-from-candidates.md)
* [2.1.1.1 Technical skills](contents/2.1.1.1-technical-skills.md)
* [2.1.1.2 Non-technical skills](contents/2.1.1.2-non-technical-skills.md)
* [2.1.1.3 What exactly is culture fit?](contents/2.1.1.3-what-exactly-is-culture-fit.md)
* [2.1.1.4 Junior vs senior roles](contents/2.1.1.4-junior-vs-senior-roles.md)
* [2.1.1.5 Do I need a Ph.D. to work in machine learning?](contents/2.1.1.5-do-i-need-a-ph.d.-to-work-in-machine-learning.md)
* [2.1.2 How companies source candidates](contents/2.1.2-how-companies-source-candidates.md)
* [2.1.3 What signals companies look for in candidates](contents/2.1.3-what-signals-companies-look-for-in-candidates.md)
* [2.2 Interview pipeline](contents/2.2-interview-pipeline.md)
* [2.2.1 Common interview formats](contents/2.2.1-common-interview-formats.md)
* [2.2.2 Alternative interview formats](contents/2.2.2-alternative-interview-formats.md)
* [2.2.3 Interviews at big companies vs. at small companies](contents/2.2.3-interviews-at-big-companies-vs.-at-small-companies.md)
* [2.2.4 Interviews for internships vs. for full-time positions](contents/2.2.4-interviews-for-internships-vs.-for-full-time-positions.md)
* [2.3 Types of questions](contents/2.3-types-of-questions.md)
* [2.3.1 Behavioral questions](contents/2.3.1-behavioral-questions.md)
* [2.3.1.1 Background and resume](contents/2.3.1.1-background-and-resume.md)
* [2.3.1.2 Interests](contents/2.3.1.2-interests.md)
* [2.3.1.3 Communication](contents/2.3.1.3-communication.md)
* [2.3.1.4 Personality](contents/2.3.1.4-personality.md)
* [2.3.2 Questions to ask your interviewers](contents/2.3.2-questions-to-ask-your-interviewers.md)
* [2.3.3 Bad interview questions](contents/2.3.3-bad-interview-questions.md)
* [2.4 Red flags](contents/2.4-red-flags.md)
* [2.5 Timeline](contents/2.5-timeline.md)
* [2.6 Understanding your odds](contents/2.6-understanding-your-odds.md)
* [Chapter 3. After an offer](contents/chapter-3.-after-an-offer.md)
* [3.1 Compensation package](contents/3.1-compensation-package.md)
* [3.1.1 Base salary](contents/3.1.1-base-salary.md)
* [3.1.2 Equity grants](contents/3.1.2-equity-grants.md)
* [3.1.3 Bonuses](contents/3.1.3-bonuses.md)
* [3.1.4 Compensation packages at different levels](contents/3.1.4-compensation-packages-at-different-levels.md)
* [3.2 Negotiation](contents/3.2-negotiation.md)
* [3.2.1 Compensation expectations](contents/3.2.1-compensation-expectations.md)
* [3.3 Career progression](contents/3.3-career-progression.md)
* [Chapter 4. Where to start](contents/chapter-4.-where-to-start.md)
* [4.1 How long do I need for my job search?](contents/4.1-how-long-do-i-need-for-my-job-search.md)
* [4.2 How other people did it](contents/4.2-how-other-people-did-it.md)
* [4.3 Resources](contents/4.3-resources.md)
* [4.3.1 Courses](contents/4.3.1-courses.md)
* [4.3.2 Books & articles](contents/4.3.2-books-&-articles.md)
* [4.3.3 Other resources](contents/4.3.3-other-resources.md)
* [4.4 Do’s and don’ts for ML interviews](contents/4.4-do’s-and-don’ts-for-ml-interviews.md)
* [4.4.1 Do’s](contents/4.4.1-do’s.md)
* [4.4.2 Don’ts](contents/4.4.2-don’ts.md)
* [Part II: Questions](contents/part-ii.-questions.md)
* [Chapter 5. Math](contents/chapter-5.-math.md)
* [Notation](contents/notation.md)
* [5.1 Algebra and (little) calculus](contents/5.1-algebra-and-calculus.md)
* [5.1.1 Vectors](contents/5.1.1-vectors.md)
* [5.1.2 Matrices](contents/5.1.2-matrices.md)
* [5.1.3 Dimensionality reduction](contents/5.1.3-dimensionality-reduction.md)
* [5.1.4 Calculus and convex optimization](contents/5.1.4-calculus-and-convex-optimization.md)
* [5.2 Probability and statistics](contents/5.2-probability-and-statistics.md)
* [5.2.1 Probability](contents/5.2.1-probability.md)
* [5.2.1.1 Basic concepts to review](contents/5.2.1.1-basic-concepts-to-review.md)
* [5.2.1.2 Questions](contents/5.2.1.2-questions.md)
* [5.2.2 Stats](contents/5.2.2-stats.md)
* [Chapter 6. Computer Science](contents/chapter-6.-computer-science.md)
* [6.1 Algorithms](contents/6.1-algorithms.md)
* [6.2 Complexity and numerical analysis](contents/6.2-complexity-and-numerical-analysis.md)
* [6.3 Data](contents/6.3-data.md)
* [6.3.1 Data structures](contents/6.3.1-data-structures.md)
* [Chapter 7. Machine learning workflows](contents/chapter-7.-machine-learning-workflows.md)
* [7.1 Basics](contents/7.1-basics.md)
* [7.2 Sampling and creating training data](contents/7.2-sampling-and-creating-training-data.md)
* [7.3 Objective functions, metrics, and evaluation](contents/7.3-objective-functions,-metrics,-and-evaluation.md)
* [Chapter 8. Machine learning algorithms](contents/chapter-8.-machine-learning-algorithms.md)
* [8.1 Classical machine learning](contents/8.1-classical-machine-learning.md)
* [8.1.1 Overview: Basic algorithm](contents/8.1.1-overview:-basic-algorithm.md)
* [8.1.2 Questions](contents/8.1.2-questions.md)
* [8.2 Deep learning architectures and applications](contents/8.2-deep-learning-architectures-and-applications.md)
* [8.2.1 Natural language processing](contents/8.2.1-natural-language-processing.md)
* [8.2.2 Computer vision](contents/8.2.2-computer-vision.md)
* [8.2.3 Reinforcement learning](contents/8.2.3-reinforcement-learning.md)
* [8.2.4 Other](contents/8.2.4-other.md)
* [8.3 Training neural networks](contents/8.3-training-neural-networks.md)
* [Chapter 5. Math](contents/chapter-5.-math.md)
* [Notation](contents/notation.md)
* [5.1 Algebra and (little) calculus](contents/5.1-algebra-and-calculus.md)
* [5.1.1 Vectors](contents/5.1.1-vectors.md)
* [5.1.2 Matrices](contents/5.1.2-matrices.md)
* [5.1.3 Dimensionality reduction](contents/5.1.3-dimensionality-reduction.md)
* [5.1.4 Calculus and convex optimization](contents/5.1.4-calculus-and-convex-optimization.md)
* [5.2 Probability and statistics](contents/5.2-probability-and-statistics.md)
* [5.2.1 Probability](contents/5.2.1-probability.md)
* [5.2.1.1 Basic concepts to review](contents/5.2.1.1-basic-concepts-to-review.md)
* [5.2.1.2 Questions](contents/5.2.1.2-questions.md)
* [5.2.2 Stats](contents/5.2.2-stats.md)
* [Chapter 6. Computer Science](contents/chapter-6.-computer-science.md)
* [6.1 Algorithms](contents/6.1-algorithms.md)
* [6.2 Complexity and numerical analysis](contents/6.2-complexity-and-numerical-analysis.md)
* [6.3 Data](contents/6.3-data.md)
* [6.3.1 Data structures](contents/6.3.1-data-structures.md)
* [Chapter 7. Machine learning workflows](contents/chapter-7.-machine-learning-workflows.md)
* [7.1 Basics](contents/7.1-basics.md)
* [7.2 Sampling and creating training data](contents/7.2-sampling-and-creating-training-data.md)
* [7.3 Objective functions, metrics, and evaluation](contents/7.3-objective-functions,-metrics,-and-evaluation.md)
* [Chapter 8. Machine learning algorithms](contents/chapter-8.-machine-learning-algorithms.md)
* [8.1 Classical machine learning](contents/8.1-classical-machine-learning.md)
* [8.1.1 Overview: Basic algorithm](contents/8.1.1-overview-basic-algorithm.md)
* [8.1.2 Questions](contents/8.1.2-questions.md)
* [8.2 Deep learning architectures and applications](contents/8.2-deep-learning-architectures-and-applications.md)
* [8.2.1 Natural language processing](contents/8.2.1-natural-language-processing.md)
* [8.2.2 Computer vision](contents/8.2.2-computer-vision.md)
* [8.2.3 Reinforcement learning](contents/8.2.3-reinforcement-learning.md)
* [8.2.4 Other](contents/8.2.4-other.md)
* [8.3 Training neural networks](contents/8.3-training-neural-networks.md)
* [Appendix](contents/appendix.md)
* [A. For interviewers](contents/a.-for-interviewers.md)
* [The zen of interviews](contents/the-zen-of-interviews.md)
* [B. Building your network](contents/b.-building-your-network.md)

* [A. For interviewers](contents/a.-for-interviewers.md)
* [The zen of interviews](contents/the-zen-of-interviews.md)
* [B. Building your network](contents/b.-building-your-network.md)
2 changes: 2 additions & 0 deletions answers/chapter5.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
The geometric interpretation of the dot product of two vectors provides a measure of simmilarity in direction of the two vectors
or in other words quantifies how much one vector is going in the direction of the other
Loading