A context-aware neural framework for adaptive informative path planning (IPP) problem.
- Install requirements at the bottom.
- Set appropriate parameters in
parameters.py, includingNUM_META_AGENT,CUDA_DEVICE,BATCH_SIZE(recommand 256 for every 8GB VRAM). - Name your run with
FOLDER_NAME. - Run
python driver.py
- Set appropriate parameters in
/eval/test_parameters.py, includingFOLDER_NAME,NUM_TEST,TRAJECTORY_SAMPLING,SAVE_IMG_GAP, etc. - Run
/eval/test_driver.py
parameters.pyTraining parameters.driver.pyDriver of training program, maintain & update the global network.runner.pyWrapper of the local network.worker.pyInteract with environment and collect episode experience.attention_net.pyDefine context-aware attention-based network.env.pyInformative path planning environment.gp_ipp.pyGaussian Process and metrics calculation./evalTest files for evaluation, similar to training./classesUtilities for generating graph, ground truth, etc./modelTrained model.
python>=3.6
numpy>=1.17
ray>=1.15 % Ray should match python version
pytorch>=1.7
scipy
scikit-learn
matplotlib
imageio
shapely
@InProceedings{cao2022catnipp,
title = {Context-Aware Attention-based Network for Informative Path Planning},
author = {Cao, Yuhong and Wang, Yizhuo and Vashisth, Apoorva and Fan, Haolin and Sartoretti, Guillaume},
booktitle = {6th Annual Conference on Robot Learning},
year = {2022}
}
Yuhong Cao
Yizhuo Wang
Apoorva Vashisth
Haolin Fan
Guillaume Sartoretti
