Here you can find a set of experimental tools; this code is provided as-is, with no support or warranty.
This script lists all the datasets in an instance, allows to select one, and copies its dataset_id to the clipboard.
Python 3.6 or higher installed; the necessary packages can be installed via pip:
pip install requests pyperclip
Run the script with the following command:
python3 list_datasets.py url api-key
- url: the base URL of the API
- api_key: the API key for authentication
- pyperclip: Distributed under the BSD 3-Clause License.
- requests: Distributed under the Apache License 2.0.
This script generates a comprehensive report for a dataset. It fetches data from the MVI API, processes the images and labels, and creates a detailed report in HTML, PDF, and Excel formats.
- Filters files based on date range or quantity
- Processes images and labels, creating annotated images
- Generates an Excel report with existing labels data
- Creates pie charts for label distribution
- Generates HTML and PDF reports with detailed information and statistics
Python 3.6 or higher installed; the necessary packages can be installed via pip:
pip install argparse jinja2 matplotlib opencv-python-headless openpyxl pandas Pillow requests weasyprint
Run the script with the following command:
python3 dataset_report_generator.py url api_key dataset_id --files <number_of_files> --start-date "dd-MMM-yyyy" --end-date "dd-MMM-yyyy"
(an example of date format dd-MMM-yyyy is: 01-Jan-2000)
- url: the base URL of the API
- api_key: the API key for authentication
- dataset_id: the ID of the dataset to be processed
- --files: (optional) the number of files to process
- --start-date: (optional) the start date for filtering files (format: dd-MMM-yyyy)
- --end-date: (optional) the end date for filtering files (format: dd-MMM-yyyy)
- if the optional parameters are not included, a report with the entire contents of the dataset will be generated.
- argparse: Distributed under the Python Software Foundation License Version 2.
- cv2 (OpenCV): Distributed under the Apache License 2.0.
- matplotlib: Distributed under the Matplotlib License (BSD-style).
- opencv-python-headless: Distributed under the MIT License. master/LICENCE).
- pandas: Distributed under the BSD 3-Clause License.
- Pillow: Distributed under the Historical Permission Notice and Disclaimer (HPND).
- requests: Distributed under the Apache License 2.0.