Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -754,7 +754,7 @@
"Type": "AWS::Lambda::Function",
"Properties": {
"Code": {
"ZipFile": "import boto3, json, os, time\n\necs = boto3.client('ecs')\nautoscaling = boto3.client('autoscaling')\n\n\ndef lambda_handler(event, context):\n print(json.dumps(dict(event, ResponseURL='...')))\n cluster = os.environ['CLUSTER']\n snsTopicArn = event['Records'][0]['Sns']['TopicArn']\n lifecycle_event = json.loads(event['Records'][0]['Sns']['Message'])\n instance_id = lifecycle_event.get('EC2InstanceId')\n if not instance_id:\n print('Got event without EC2InstanceId: %s', json.dumps(dict(event, ResponseURL='...')))\n return\n\n instance_arn = container_instance_arn(cluster, instance_id)\n print('Instance %s has container instance ARN %s' % (lifecycle_event['EC2InstanceId'], instance_arn))\n\n if not instance_arn:\n return\n\n task_arns = container_instance_task_arns(cluster, instance_arn)\n\n if task_arns:\n print('Instance ARN %s has task ARNs %s' % (instance_arn, ', '.join(task_arns)))\n\n while has_tasks(cluster, instance_arn, task_arns):\n time.sleep(10)\n\n try:\n print('Terminating instance %s' % instance_id)\n autoscaling.complete_lifecycle_action(\n LifecycleActionResult='CONTINUE',\n **pick(lifecycle_event, 'LifecycleHookName', 'LifecycleActionToken', 'AutoScalingGroupName'))\n except Exception as e:\n # Lifecycle action may have already completed.\n print(str(e))\n\n\ndef container_instance_arn(cluster, instance_id):\n \"\"\"Turn an instance ID into a container instance ARN.\"\"\"\n arns = ecs.list_container_instances(cluster=cluster, filter='ec2InstanceId==' + instance_id)['containerInstanceArns']\n if not arns:\n return None\n return arns[0]\n\ndef container_instance_task_arns(cluster, instance_arn):\n \"\"\"Fetch tasks for a container instance ARN.\"\"\"\n arns = ecs.list_tasks(cluster=cluster, containerInstance=instance_arn)['taskArns']\n return arns\n\ndef has_tasks(cluster, instance_arn, task_arns):\n \"\"\"Return True if the instance is running tasks for the given cluster.\"\"\"\n instances = ecs.describe_container_instances(cluster=cluster, containerInstances=[instance_arn])['containerInstances']\n if not instances:\n return False\n instance = instances[0]\n\n if instance['status'] == 'ACTIVE':\n # Start draining, then try again later\n set_container_instance_to_draining(cluster, instance_arn)\n return True\n\n task_count = None\n\n if task_arns:\n # Fetch details for tasks running on the container instance\n tasks = ecs.describe_tasks(cluster=cluster, tasks=task_arns)['tasks']\n if tasks:\n # Consider any non-stopped tasks as running\n task_count = sum(task['lastStatus'] != 'STOPPED' for task in tasks) + instance['pendingTasksCount']\n\n if not task_count:\n # Fallback to instance task counts if detailed task information is unavailable\n task_count = instance['runningTasksCount'] + instance['pendingTasksCount']\n\n print('Instance %s has %s tasks' % (instance_arn, task_count))\n\n return task_count > 0\n\ndef set_container_instance_to_draining(cluster, instance_arn):\n ecs.update_container_instances_state(\n cluster=cluster,\n containerInstances=[instance_arn], status='DRAINING')\n\n\ndef pick(dct, *keys):\n \"\"\"Pick a subset of a dict.\"\"\"\n return {k: v for k, v in dct.items() if k in keys}\n"
"ZipFile": "import boto3, json, os, time\n\necs = boto3.client('ecs')\nautoscaling = boto3.client('autoscaling')\n\n\ndef lambda_handler(event, context):\n print(json.dumps(dict(event, ResponseURL='...')))\n cluster = os.environ['CLUSTER']\n snsTopicArn = event['Records'][0]['Sns']['TopicArn']\n lifecycle_event = json.loads(event['Records'][0]['Sns']['Message'])\n instance_id = lifecycle_event.get('EC2InstanceId')\n if not instance_id:\n print('Got event without EC2InstanceId: %s' % json.dumps(dict(event, ResponseURL='...')))\n return\n\n instance_arn = container_instance_arn(cluster, instance_id)\n print('Instance %s has container instance ARN %s' % (lifecycle_event['EC2InstanceId'], instance_arn))\n\n if not instance_arn:\n return\n\n task_arns = container_instance_task_arns(cluster, instance_arn)\n\n if task_arns:\n print('Instance ARN %s has task ARNs %s' % (instance_arn, ', '.join(task_arns)))\n\n while has_tasks(cluster, instance_arn, task_arns):\n time.sleep(10)\n\n try:\n print('Terminating instance %s' % instance_id)\n autoscaling.complete_lifecycle_action(\n LifecycleActionResult='CONTINUE',\n **pick(lifecycle_event, 'LifecycleHookName', 'LifecycleActionToken', 'AutoScalingGroupName'))\n except Exception as e:\n # Lifecycle action may have already completed.\n print(str(e))\n\n\ndef container_instance_arn(cluster, instance_id):\n \"\"\"Turn an instance ID into a container instance ARN.\"\"\"\n arns = ecs.list_container_instances(cluster=cluster, filter='ec2InstanceId==' + instance_id)['containerInstanceArns']\n if not arns:\n return None\n return arns[0]\n\ndef container_instance_task_arns(cluster, instance_arn):\n \"\"\"Fetch tasks for a container instance ARN.\"\"\"\n arns = ecs.list_tasks(cluster=cluster, containerInstance=instance_arn)['taskArns']\n return arns\n\ndef has_tasks(cluster, instance_arn, task_arns):\n \"\"\"Return True if the instance is running tasks for the given cluster.\"\"\"\n instances = ecs.describe_container_instances(cluster=cluster, containerInstances=[instance_arn])['containerInstances']\n if not instances:\n return False\n instance = instances[0]\n\n if instance['status'] == 'ACTIVE':\n # Start draining, then try again later\n set_container_instance_to_draining(cluster, instance_arn)\n return True\n\n task_count = None\n\n if task_arns:\n # Fetch details for tasks running on the container instance\n tasks = ecs.describe_tasks(cluster=cluster, tasks=task_arns)['tasks']\n if tasks:\n # Consider any non-stopped tasks as running\n task_count = sum(task['lastStatus'] != 'STOPPED' for task in tasks) + instance['pendingTasksCount']\n\n if not task_count:\n # Fallback to instance task counts if detailed task information is unavailable\n task_count = instance['runningTasksCount'] + instance['pendingTasksCount']\n\n print('Instance %s has %s tasks' % (instance_arn, task_count))\n\n return task_count > 0\n\ndef set_container_instance_to_draining(cluster, instance_arn):\n ecs.update_container_instances_state(\n cluster=cluster,\n containerInstances=[instance_arn], status='DRAINING')\n\n\ndef pick(dct, *keys):\n \"\"\"Pick a subset of a dict.\"\"\"\n return {k: v for k, v in dct.items() if k in keys}\n"
},
"Environment": {
"Variables": {
Expand All @@ -770,7 +770,7 @@
"Arn"
]
},
"Runtime": "python3.9",
"Runtime": "python3.13",
"Tags": [
{
"Key": "Name",
Expand Down Expand Up @@ -1595,4 +1595,4 @@
]
}
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -776,7 +776,7 @@
"Type": "AWS::Lambda::Function",
"Properties": {
"Code": {
"ZipFile": "import boto3, json, os, time\n\necs = boto3.client('ecs')\nautoscaling = boto3.client('autoscaling')\n\n\ndef lambda_handler(event, context):\n print(json.dumps(dict(event, ResponseURL='...')))\n cluster = os.environ['CLUSTER']\n snsTopicArn = event['Records'][0]['Sns']['TopicArn']\n lifecycle_event = json.loads(event['Records'][0]['Sns']['Message'])\n instance_id = lifecycle_event.get('EC2InstanceId')\n if not instance_id:\n print('Got event without EC2InstanceId: %s', json.dumps(dict(event, ResponseURL='...')))\n return\n\n instance_arn = container_instance_arn(cluster, instance_id)\n print('Instance %s has container instance ARN %s' % (lifecycle_event['EC2InstanceId'], instance_arn))\n\n if not instance_arn:\n return\n\n task_arns = container_instance_task_arns(cluster, instance_arn)\n\n if task_arns:\n print('Instance ARN %s has task ARNs %s' % (instance_arn, ', '.join(task_arns)))\n\n while has_tasks(cluster, instance_arn, task_arns):\n time.sleep(10)\n\n try:\n print('Terminating instance %s' % instance_id)\n autoscaling.complete_lifecycle_action(\n LifecycleActionResult='CONTINUE',\n **pick(lifecycle_event, 'LifecycleHookName', 'LifecycleActionToken', 'AutoScalingGroupName'))\n except Exception as e:\n # Lifecycle action may have already completed.\n print(str(e))\n\n\ndef container_instance_arn(cluster, instance_id):\n \"\"\"Turn an instance ID into a container instance ARN.\"\"\"\n arns = ecs.list_container_instances(cluster=cluster, filter='ec2InstanceId==' + instance_id)['containerInstanceArns']\n if not arns:\n return None\n return arns[0]\n\ndef container_instance_task_arns(cluster, instance_arn):\n \"\"\"Fetch tasks for a container instance ARN.\"\"\"\n arns = ecs.list_tasks(cluster=cluster, containerInstance=instance_arn)['taskArns']\n return arns\n\ndef has_tasks(cluster, instance_arn, task_arns):\n \"\"\"Return True if the instance is running tasks for the given cluster.\"\"\"\n instances = ecs.describe_container_instances(cluster=cluster, containerInstances=[instance_arn])['containerInstances']\n if not instances:\n return False\n instance = instances[0]\n\n if instance['status'] == 'ACTIVE':\n # Start draining, then try again later\n set_container_instance_to_draining(cluster, instance_arn)\n return True\n\n task_count = None\n\n if task_arns:\n # Fetch details for tasks running on the container instance\n tasks = ecs.describe_tasks(cluster=cluster, tasks=task_arns)['tasks']\n if tasks:\n # Consider any non-stopped tasks as running\n task_count = sum(task['lastStatus'] != 'STOPPED' for task in tasks) + instance['pendingTasksCount']\n\n if not task_count:\n # Fallback to instance task counts if detailed task information is unavailable\n task_count = instance['runningTasksCount'] + instance['pendingTasksCount']\n\n print('Instance %s has %s tasks' % (instance_arn, task_count))\n\n return task_count > 0\n\ndef set_container_instance_to_draining(cluster, instance_arn):\n ecs.update_container_instances_state(\n cluster=cluster,\n containerInstances=[instance_arn], status='DRAINING')\n\n\ndef pick(dct, *keys):\n \"\"\"Pick a subset of a dict.\"\"\"\n return {k: v for k, v in dct.items() if k in keys}\n"
"ZipFile": "import boto3, json, os, time\n\necs = boto3.client('ecs')\nautoscaling = boto3.client('autoscaling')\n\n\ndef lambda_handler(event, context):\n print(json.dumps(dict(event, ResponseURL='...')))\n cluster = os.environ['CLUSTER']\n snsTopicArn = event['Records'][0]['Sns']['TopicArn']\n lifecycle_event = json.loads(event['Records'][0]['Sns']['Message'])\n instance_id = lifecycle_event.get('EC2InstanceId')\n if not instance_id:\n print('Got event without EC2InstanceId: %s' % json.dumps(dict(event, ResponseURL='...')))\n return\n\n instance_arn = container_instance_arn(cluster, instance_id)\n print('Instance %s has container instance ARN %s' % (lifecycle_event['EC2InstanceId'], instance_arn))\n\n if not instance_arn:\n return\n\n task_arns = container_instance_task_arns(cluster, instance_arn)\n\n if task_arns:\n print('Instance ARN %s has task ARNs %s' % (instance_arn, ', '.join(task_arns)))\n\n while has_tasks(cluster, instance_arn, task_arns):\n time.sleep(10)\n\n try:\n print('Terminating instance %s' % instance_id)\n autoscaling.complete_lifecycle_action(\n LifecycleActionResult='CONTINUE',\n **pick(lifecycle_event, 'LifecycleHookName', 'LifecycleActionToken', 'AutoScalingGroupName'))\n except Exception as e:\n # Lifecycle action may have already completed.\n print(str(e))\n\n\ndef container_instance_arn(cluster, instance_id):\n \"\"\"Turn an instance ID into a container instance ARN.\"\"\"\n arns = ecs.list_container_instances(cluster=cluster, filter='ec2InstanceId==' + instance_id)['containerInstanceArns']\n if not arns:\n return None\n return arns[0]\n\ndef container_instance_task_arns(cluster, instance_arn):\n \"\"\"Fetch tasks for a container instance ARN.\"\"\"\n arns = ecs.list_tasks(cluster=cluster, containerInstance=instance_arn)['taskArns']\n return arns\n\ndef has_tasks(cluster, instance_arn, task_arns):\n \"\"\"Return True if the instance is running tasks for the given cluster.\"\"\"\n instances = ecs.describe_container_instances(cluster=cluster, containerInstances=[instance_arn])['containerInstances']\n if not instances:\n return False\n instance = instances[0]\n\n if instance['status'] == 'ACTIVE':\n # Start draining, then try again later\n set_container_instance_to_draining(cluster, instance_arn)\n return True\n\n task_count = None\n\n if task_arns:\n # Fetch details for tasks running on the container instance\n tasks = ecs.describe_tasks(cluster=cluster, tasks=task_arns)['tasks']\n if tasks:\n # Consider any non-stopped tasks as running\n task_count = sum(task['lastStatus'] != 'STOPPED' for task in tasks) + instance['pendingTasksCount']\n\n if not task_count:\n # Fallback to instance task counts if detailed task information is unavailable\n task_count = instance['runningTasksCount'] + instance['pendingTasksCount']\n\n print('Instance %s has %s tasks' % (instance_arn, task_count))\n\n return task_count > 0\n\ndef set_container_instance_to_draining(cluster, instance_arn):\n ecs.update_container_instances_state(\n cluster=cluster,\n containerInstances=[instance_arn], status='DRAINING')\n\n\ndef pick(dct, *keys):\n \"\"\"Pick a subset of a dict.\"\"\"\n return {k: v for k, v in dct.items() if k in keys}\n"
},
"Environment": {
"Variables": {
Expand All @@ -792,7 +792,7 @@
"Arn"
]
},
"Runtime": "python3.9",
"Runtime": "python3.13",
"Tags": [
{
"Key": "Name",
Expand Down Expand Up @@ -1269,4 +1269,4 @@
]
}
}
}
}
Loading