Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 8 additions & 9 deletions autosklearn/pipeline/implementations/MinorityCoalescer.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,19 +55,18 @@ def transform(self, X):
indptr_start = X.indptr[column]
indptr_end = X.indptr[column + 1]
unique = np.unique(X.data[indptr_start:indptr_end])
else:
unique = np.unique(X[:, column])

for unique_value in unique:
if unique_value not in self.do_not_coalesce_[column]:
if sparse.issparse(X):
for unique_value in unique:
if unique_value not in self.do_not_coalesce_[column]:
indptr_start = X.indptr[column]
indptr_end = X.indptr[column + 1]
X.data[indptr_start:indptr_end][
X.data[indptr_start:indptr_end] == unique_value] = 1
else:
X[:, column][X[:, column] == unique_value] = 1

else:
unique = np.unique(X[:, column])
unique_values = [unique_value for unique_value in unique
if unique_value not in self.do_not_coalesce_[column]]
mask = np.isin(X[:, column], unique_values)
X[mask, column] = 1
return X

def fit_transform(self, X, y=None):
Expand Down