Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/20_basic/README.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,4 +4,4 @@
Basic Examples
==============

Examples for basic classification, regression and multi-label classification datasets.
Examples for basic classification, regression, multi-output regression, and multi-label classification datasets.
57 changes: 57 additions & 0 deletions examples/20_basic/example_multioutput_regression.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# -*- encoding: utf-8 -*-
"""
=======================
Multi-output Regression
=======================

The following example shows how to fit a multioutput regression model with
*auto-sklearn*.
"""
import numpy as numpy

from sklearn.datasets import make_regression
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split

from autosklearn.regression import AutoSklearnRegressor


############################################################################
# Data Loading
# ============

X, y = make_regression(n_samples=1000, n_features=10, n_informative=5, n_targets=3)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

############################################################################
# Build and fit a regressor
# =========================

automl = AutoSklearnRegressor(
time_left_for_this_task=120,
per_run_time_limit=30,
tmp_folder='/tmp/autosklearn_regression_example_tmp',
output_folder='/tmp/autosklearn_regression_example_out',
)
automl.fit(X_train, y_train, dataset_name='synthetic')

############################################################################
# Print the final ensemble constructed by auto-sklearn
# ====================================================

print(automl.show_models())

###########################################################################
# Get the Score of the final ensemble
# ===================================

predictions = automl.predict(X_test)
print("R2 score:", r2_score(y_test, predictions))

###########################################################################
# Get the configuration space
# ===========================

# The configuration space is reduced, i.e. no SVM.
print(automl.get_configuration_space(X_train, y_train))