Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion .github/workflows/stale.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -18,5 +18,7 @@ jobs:
close-issue-message: >
This issue has been automatically closed due to inactivity.
stale-issue-label: 'stale'
only-issue-labels: 'Answered,Feedback-Required,invalid,wontfix'
# Only issues with ANY of these labels are checked.
# Separate multiple labels with commas (eg. "incomplete,waiting-feedback").
any-of-issue-labels: 'Answered,Feedback-Required,invalid,wontfix'
exempt-all-milestones: true
11 changes: 0 additions & 11 deletions test/test_automl/test_automl.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
import pandas as pd
import pytest
import sklearn.datasets
from sklearn.base import clone
from smac.scenario.scenario import Scenario
from smac.facade.roar_facade import ROAR

Expand Down Expand Up @@ -427,16 +426,6 @@ def test_do_dummy_prediction(backend, dask_client, datasets):
'predictions_ensemble_1_1_0.0.npy')
)

model_path = os.path.join(backend.temporary_directory, '.auto-sklearn',
'runs', '1_1_0.0',
'1.1.0.0.model')

# Make sure the dummy model complies with scikit learn
# get/set params
assert os.path.exists(model_path)
with open(model_path, 'rb') as model_handler:
clone(pickle.load(model_handler))

auto._clean_logger()

del auto
Expand Down
31 changes: 31 additions & 0 deletions test/test_evaluation/test_dummy_pipelines.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
import numpy as np

import pytest

from sklearn.base import clone
from sklearn.datasets import make_classification, make_regression
from sklearn.utils.validation import check_is_fitted

from autosklearn.evaluation.abstract_evaluator import MyDummyClassifier, MyDummyRegressor


@pytest.mark.parametrize("task_type", ['classification', 'regression'])
def test_dummy_pipeline(task_type):
if task_type == 'classification':
estimator_class = MyDummyClassifier
data_maker = make_classification
elif task_type == 'regression':
estimator_class = MyDummyRegressor
data_maker = make_regression
else:
pytest.fail(task_type)

estimator = estimator_class(config=1, random_state=np.random.RandomState(42))
X, y = data_maker()
estimator.fit(X, y)
check_is_fitted(estimator)

assert np.shape(X)[0] == np.shape(estimator.predict(X))[0]

# make sure we comply with scikit-learn estimator API
clone(estimator)