Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 7 additions & 3 deletions python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -1275,9 +1275,13 @@ def _unbind(self, node: fx.Node) -> relax.Var:
dim = node.args[1] if len(node.args) > 1 else node.kwargs.get("dim", 0)
assert isinstance(dim, int), "Expected 2nd argument of unbind as int"
selections = self.shape_of(x)[dim].value
ret, split = [], self.block_builder.emit(relax.op.split(x, selections, dim))
for i in range(selections):
ret.append(self.block_builder.emit(relax.op.squeeze(split[i], axis=dim)))
ret = []
if selections == 1:
ret.append(self.block_builder.emit(relax.op.squeeze(x, axis=dim)))
else:
split = self.block_builder.emit(relax.op.split(x, selections, dim))
for i in range(selections):
ret.append(self.block_builder.emit(relax.op.squeeze(split[i], axis=dim)))
return self.block_builder.emit(relax.Tuple(ret))

########## Statistical ##########
Expand Down
16 changes: 16 additions & 0 deletions tests/python/relax/test_frontend_from_exported_program.py
Original file line number Diff line number Diff line change
Expand Up @@ -3251,9 +3251,25 @@ def main(
R.output(gv)
return gv

@tvm.script.ir_module
class expected3:
@R.function
def main(
data: R.Tensor((3, 1, 3), dtype="float32")
) -> R.Tuple(R.Tensor((3, 3), dtype="float32")):
with R.dataflow():
lv: R.Tensor((3, 3), dtype="float32") = R.squeeze(data, axis=[1])
lv1: R.Tuple(R.Tensor((3, 3), dtype="float32")) = (lv,)
lv2: R.Tensor((3, 3), dtype="float32") = lv1[0]
gv: R.Tuple(R.Tensor((3, 3), dtype="float32")) = (lv2,)
R.output(gv)
return gv

example_args = (torch.randn(3, 3, 10, 10, dtype=torch.float32),)
verify_model(Unbind1(), example_args, {}, expected1)
verify_model(Unbind2(), example_args, {}, expected2)
single_dim_args = (torch.randn(3, 1, 3, dtype=torch.float32),)
verify_model(Unbind2(), single_dim_args, {}, expected3)


def test_interpolate():
Expand Down