Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -373,6 +373,11 @@ Additions to existing modules
map-catMaybes : map f ∘ catMaybes ≗ catMaybes ∘ map (Maybe.map f)
```

* In `Data.List.Relation.Binary.Subset.Setoid.Properties`
```
map⁺ : f Preserves _≈_ ⟶ _≈′_ → as ⊆ bs → map f as ⊆′ map f bs
```

* In `Data.List.Relation.Unary.All.Properties`:
```agda
All-catMaybes⁺ : All (Maybe.All P) xs → All P (catMaybes xs)
Expand Down
26 changes: 24 additions & 2 deletions src/Data/List/Relation/Binary/Subset/Setoid/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ open import Level using (Level)
open import Relation.Nullary using (¬_; does; yes; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Unary using (Pred; Decidable) renaming (_⊆_ to _⋐_)
open import Relation.Binary.Core using (_⇒_)
open import Relation.Binary.Core using (_⇒_; _Preserves_⟶_)
open import Relation.Binary.Definitions
using (Reflexive; Transitive; _Respectsʳ_; _Respectsˡ_; _Respects_)
open import Relation.Binary.Bundles using (Setoid; Preorder)
Expand All @@ -38,7 +38,7 @@ open Setoid using (Carrier)

private
variable
a p q ℓ : Level
a b p q r ℓ : Level

------------------------------------------------------------------------
-- Relational properties with _≋_ (pointwise equality)
Expand Down Expand Up @@ -206,6 +206,28 @@ module _ (S : Setoid a ℓ) where
++⁺ : ∀ {ws xs ys zs} → ws ⊆ xs → ys ⊆ zs → ws ++ ys ⊆ xs ++ zs
++⁺ ws⊆xs ys⊆zs = ⊆-trans S (++⁺ˡ _ ws⊆xs) (++⁺ʳ _ ys⊆zs)

------------------------------------------------------------------------
-- map

module _ (S : Setoid a ℓ) (R : Setoid b r) where

private
module S = Setoid S
module R = Setoid R

module S∈ = Membership S
module R∈ = Membership R

module S⊆ = Subset S
module R⊆ = Subset R

map⁺ : ∀ {as bs} {f : S.Carrier → R.Carrier} →
f Preserves S._≈_ ⟶ R._≈_ →
as S⊆.⊆ bs → map f as R⊆.⊆ map f bs
map⁺ {f = f} f-pres as⊆bs v∈f[as] =
let x , x∈as , v≈f[x] = ∈-map⁻ S R v∈f[as] in
∈-resp-≈ R (R.sym v≈f[x]) (∈-map⁺ S R f-pres (as⊆bs x∈as))

------------------------------------------------------------------------
-- filter

Expand Down