@@ -131,6 +131,9 @@ mutual
131131 data Sortₐ′ {ℓ} : Typeₐ ℓ ⟨sort⟩ where
132132 set : ∀ {t} → Termₐ Ann t → Sortₐ′ Ann (set t)
133133 lit : ∀ n → Sortₐ′ Ann (lit n)
134+ prop : ∀ {t} → Termₐ Ann t → Sortₐ′ Ann (prop t)
135+ propLit : ∀ n → Sortₐ′ Ann (propLit n)
136+ inf : ∀ n → Sortₐ′ Ann (inf n)
134137 unknown : Sortₐ′ Ann unknown
135138
136139 data Patternₐ′ {ℓ} : Typeₐ ℓ ⟨pat⟩ where
@@ -197,6 +200,9 @@ module _ (annFun : AnnotationFun Ann) where
197200 annotate′ {⟨pat⟩} (absurd x) = absurd x
198201 annotate′ {⟨sort⟩} (set t) = set (annotate t)
199202 annotate′ {⟨sort⟩} (lit n) = lit n
203+ annotate′ {⟨sort⟩} (prop t) = prop (annotate t)
204+ annotate′ {⟨sort⟩} (propLit n) = propLit n
205+ annotate′ {⟨sort⟩} (inf n) = inf n
200206 annotate′ {⟨sort⟩} unknown = unknown
201207 annotate′ {⟨clause⟩} (clause tel ps t) = clause (annotate tel) (annotate ps) (annotate t)
202208 annotate′ {⟨clause⟩} (absurd-clause tel ps) = absurd-clause (annotate tel) (annotate ps)
@@ -234,6 +240,9 @@ mutual
234240 map′ ⟨pat⟩ f (absurd x) = absurd x
235241 map′ ⟨sort⟩ f (set t) = set (map f t)
236242 map′ ⟨sort⟩ f (lit n) = lit n
243+ map′ ⟨sort⟩ f (prop t) = prop (map f t)
244+ map′ ⟨sort⟩ f (propLit n) = propLit n
245+ map′ ⟨sort⟩ f (inf n) = inf n
237246 map′ ⟨sort⟩ f unknown = unknown
238247 map′ ⟨clause⟩ f (clause Γ ps args) = clause (map f Γ) (map f ps) (map f args)
239248 map′ ⟨clause⟩ f (absurd-clause Γ ps) = absurd-clause (map f Γ) (map f ps)
@@ -271,6 +280,9 @@ module _ {W : Set ℓ} (ε : W) (_∪_ : W → W → W) where
271280 defaultAnn ⟨pat⟩ (absurd x) = ε
272281 defaultAnn ⟨sort⟩ (set t) = ann t
273282 defaultAnn ⟨sort⟩ (lit n) = ε
283+ defaultAnn ⟨sort⟩ (prop t) = ann t
284+ defaultAnn ⟨sort⟩ (propLit n) = ε
285+ defaultAnn ⟨sort⟩ (inf n) = ε
274286 defaultAnn ⟨sort⟩ unknown = ε
275287 defaultAnn ⟨clause⟩ (clause Γ ps t) = ann Γ ∪ (ann ps ∪ ann t)
276288 defaultAnn ⟨clause⟩ (absurd-clause Γ ps) = ann Γ ∪ ann ps
@@ -321,6 +333,9 @@ module Traverse {M : Set → Set} (appl : RawApplicative M) where
321333 traverse′ {⟨pat⟩} (absurd x) = pure (absurd x)
322334 traverse′ {⟨sort⟩} (set t) = set <$> traverse t
323335 traverse′ {⟨sort⟩} (lit n) = pure (lit n)
336+ traverse′ {⟨sort⟩} (prop t) = prop <$> traverse t
337+ traverse′ {⟨sort⟩} (propLit n) = pure (propLit n)
338+ traverse′ {⟨sort⟩} (inf n) = pure (inf n)
324339 traverse′ {⟨sort⟩} unknown = pure unknown
325340 traverse′ {⟨clause⟩} (clause Γ ps t) = clause <$> traverse Γ <*> traverse ps <*> traverse t
326341 traverse′ {⟨clause⟩} (absurd-clause Γ ps) = absurd-clause <$> traverse Γ <*> traverse ps
0 commit comments