Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions example/20_convnd_bwd_weight_xdl/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
add_example_executable(example_convnd_bwd_weight_xdl convnd_bwd_weight_xdl.cpp)
target_link_libraries(example_convnd_bwd_weight_xdl PRIVATE conv_util)
387 changes: 387 additions & 0 deletions example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,387 @@
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>

#include "check_err.hpp"
#include "conv_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_backward_weight.hpp"

using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;

using DeviceConvBwdWeightBasePtr =
ck::tensor_operation::device::DeviceConvBwdWeightPtr<InElementOp, WeiElementOp, OutElementOp>;

// clang-format off
template <ck::index_t NumDimSpatial>
using DeviceConvndBwdWeightInstance = ck::tensor_operation::device::
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
NumDimSpatial, // NumDimSpatial
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on

template <ck::index_t NumDimSpatial>
using ReferenceConvBwdWeightInstance =
ck::tensor_operation::host::ReferenceConvBwdWeight<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NumDimSpatial>;

void print_use_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=random value, 2= init to 1 )\n"
<< "arg3: time kernel (0=n0, 1=yes)\n"
<< "arg4: is show log (0=no, 1=yes)\n"
<< "arg5: split-k \n"
<< "arg6: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}

ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, char* argv[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck::utils::conv::ConvParams params;
int arg_idx = 7;

params.num_dim_spatial_ = num_dim_spatial;
params.N_ = std::stoi(argv[arg_idx++]);
params.K_ = std::stoi(argv[arg_idx++]);
params.C_ = std::stoi(argv[arg_idx++]);

params.filter_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations_[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads_[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads_[i] = std::stoi(argv[arg_idx++]);
}

return params;
}

DeviceConvBwdWeightBasePtr get_conv_instance(int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 3: {
return std::make_unique<DeviceConvndBwdWeightInstance<3>>();
}
case 2: {
return std::make_unique<DeviceConvndBwdWeightInstance<2>>();
}
case 1: {
return std::make_unique<DeviceConvndBwdWeightInstance<1>>();
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}

int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int num_dim_spatial = 2;
int do_log = 0;
int split_k = 1;

ck::utils::conv::ConvParams params;
params.C_ = 128;

if(argc == 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
do_log = std::stoi(argv[4]);
split_k = std::stoi(argv[5]);
}
else if(argc > 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
do_log = std::stoi(argv[4]);
split_k = std::stoi(argv[5]);
num_dim_spatial = std::stoi(argv[6]);
// check args number
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + 7;
if(cmdline_nargs != argc)
{
print_use_msg();
exit(1);
}

params = parse_conv_params(num_dim_spatial, argv);
}
else if(argc != 1)
{
print_use_msg();
exit(1);
}

std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N_),
static_cast<std::size_t>(params.C_)};
input_dims.insert(std::end(input_dims),
std::begin(params.input_spatial_lengths_),
std::end(params.input_spatial_lengths_));

std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K_),
static_cast<std::size_t>(params.C_)};
filter_dims.insert(std::end(filter_dims),
std::begin(params.filter_spatial_lengths_),
std::end(params.filter_spatial_lengths_));

const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N_),
static_cast<std::size_t>(params.K_)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths),
std::end(output_spatial_lengths));

Tensor<InDataType> in_n_c_hi_wi(
ck::utils::conv::get_input_host_tensor_descriptor(input_dims, num_dim_spatial));
Tensor<WeiDataType> wei_k_c_y_x_host_result(
ck::utils::conv::get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<WeiDataType> wei_k_c_y_x_device_result(
ck::utils::conv::get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<OutDataType> out_n_k_ho_wo(
ck::utils::conv::get_output_host_tensor_descriptor(output_dims, num_dim_spatial));

std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_device_result.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;

std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_host_result.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;

switch(init_method)
{
case 0: break;
case 1:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
break;
default:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}

DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) *
wei_k_c_y_x_device_result.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());

in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
// reset input to zero
wei_device_buf.SetZero();

// do GEMM
auto conv = get_conv_instance(num_dim_spatial);
auto invoker = conv->MakeInvokerPointer();
auto argument =
conv->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{},
split_k);

if(!conv->IsSupportedArgument(argument.get()))
{
std::cout << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
return 1;
}

float ave_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});

std::size_t flop = ck::utils::conv::get_flops(
params.N_, params.C_, params.K_, params.filter_spatial_lengths_, output_spatial_lengths);
std::size_t num_btype = ck::utils::conv::get_btype<InDataType, WeiDataType, OutDataType>(
params.N_,
params.C_,
params.K_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths);

float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

float gb_per_sec = num_btype / 1.E6 / ave_time;

std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;

if(do_verification)
{
auto verify_f = [&](const auto& ref_conv) {
auto ref_invoker = ref_conv.MakeInvoker();

auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
wei_k_c_y_x_host_result,
out_n_k_ho_wo,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{});

ref_invoker.Run(ref_argument);

wei_device_buf.FromDevice(wei_k_c_y_x_device_result.mData.data());

if(do_log)
{
LogRangeAsType<float>(std::cout << "out: ", out_n_k_ho_wo.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "in : ", in_n_c_hi_wi.mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "wei_device(after): ", wei_k_c_y_x_device_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "wei_host : ", wei_k_c_y_x_host_result.mData, ",")
<< std::endl;
}

return ck::utils::check_err(wei_k_c_y_x_device_result.mData,
wei_k_c_y_x_host_result.mData)
? 0
: 1;
};

switch(num_dim_spatial)
{
case 3: {
auto ref_conv = ReferenceConvBwdWeightInstance<3>();
verify_f(ref_conv);
break;
}
case 2: {
auto ref_conv = ReferenceConvBwdWeightInstance<2>();
verify_f(ref_conv);
break;
}
case 1: {
auto ref_conv = ReferenceConvBwdWeightInstance<1>();
verify_f(ref_conv);
break;
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
return 0;
}
1 change: 1 addition & 0 deletions example/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -52,3 +52,4 @@ add_subdirectory(15_grouped_gemm)
add_subdirectory(16_gemm_reduce)
add_subdirectory(18_batched_gemm_reduce)
add_subdirectory(19_binary_elementwise)
add_subdirectory(20_convnd_bwd_weight_xdl)
Loading