Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions RecommenderSystems/dlrm/models/dlrm.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,7 +211,6 @@ def __init__(self, args):
feature_size = self.interaction.output_feature_size(args.embedding_vec_size, args.bottom_mlp[-1])
self.top_mlp = MLP(feature_size, args.top_mlp)
self.scores = nn.Linear(args.top_mlp[-1], 1)
self.sigmoid = nn.Sigmoid()


def forward(self, dense_fields, sparse_fields) -> flow.Tensor:
Expand All @@ -223,7 +222,7 @@ def forward(self, dense_fields, sparse_fields) -> flow.Tensor:
features = self.interaction(dense_fields, embedding)
features = self.top_mlp(features)
scores = self.scores(features)
return self.sigmoid(scores)
return scores


def make_dlrm_module(args):
Expand Down
9 changes: 5 additions & 4 deletions RecommenderSystems/dlrm/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ def __init__(self):
growth_interval=2000,
)

self.loss = flow.nn.BCELoss(reduction="none").to("cuda")
self.loss = flow.nn.BCEWithLogitsLoss(reduction="none").to("cuda")
if self.execution_mode == "graph":
if self.dataset_format == 'petastorm':
self.eval_graph = DLRMValGraph(self.dlrm_module, args.use_fp16)
Expand Down Expand Up @@ -190,7 +190,8 @@ def eval(self, save_model=False):
labels = []
preds = []
for _ in range(self.eval_batchs):
pred, label = self.inference()
logits, label = self.inference()
pred = logits.sigmoid()
label_ = label.numpy().astype(np.float32)
labels.append(label_)
preds.append(pred.numpy())
Expand Down Expand Up @@ -242,8 +243,8 @@ def train_one_step(self):
return self.train_graph()
else:
labels, dense_fields, sparse_fields = self.load_data(self.train_dataloader)
predicts = self.dlrm_module(dense_fields, sparse_fields)
loss = self.loss(predicts, labels)
logits = self.dlrm_module(dense_fields, sparse_fields)
loss = self.loss(logits, labels)
loss = flow.mean(loss)
loss.backward()
self.opt.step()
Expand Down