Skip to content

MinMolang/AI-Vision

ย 
ย 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

37 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๋„ค์ด๋ฒ„ AI ํ•ด์ปคํ†ค 2018_Ai Vision

"์˜ฌํ•ด ๋ด„ ์ฒซ๊ฑธ์Œ์„ ๋‚ด๋””๋”˜ AIํ•ด์ปคํ†ค์„ ๊ธฐ์–ตํ•˜์‹œ๋‚˜์š”?"

์•ฝ ํ•œ๋‹ฌ๊ฐ„์˜ ์—ฌ์ •๋™์•ˆ ์—ฌ๋Ÿฌ๋ถ„๋“ค์˜
์น˜์—ดํ•œ ๊ณ ๋ฏผ๊ณผ ์—ด์ •์ด ์žˆ์—ˆ๊ธฐ์— ๋‘๋ฒˆ์งธ AI Hackathon ์œผ๋กœ ์ฐพ์•„์˜ฌ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
๊ทธ๋ž˜์„œ ์ด๋ฒˆ ํ•ด์ปคํ†ค์€ ๋” ํฅ๋ฏธ๋กœ์šด AI Vision ์ฃผ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ๋” ํ’์„ฑํ•œ ์ž๋ฆฌ๋ฅผ ๋งˆ๋ จํ–ˆ์Šต๋‹ˆ๋‹ค.

๋„ค์ด๋ฒ„ AI ํ•ด์ปคํ†ค 2018์€ ๋„ค์ด๋ฒ„์˜ ํด๋ผ์šฐ๋“œ ๋จธ์‹ ๋Ÿฌ๋‹ ํ”Œ๋žซํผ์ธ NSML๊ณผ ํ•จ๊ป˜ ํ•ฉ๋‹ˆ๋‹ค.

NSML(Naver Smart Machine Learning)์€ ๋ชจ๋ธ์„ ์—ฐ๊ตฌํ•˜๊ณ  ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ๋ณต์žกํ•œ ๊ณผ์ •์„ ๋Œ€์‹  ์ฒ˜๋ฆฌํ•ด์ฃผ์–ด
์—ฐ๊ตฌ ๊ฐœ๋ฐœ์ž๋“ค์ด "๋ชจ๋ธ ๊ฐœ๋ฐœ"์—๋งŒ ์ „๋…ํ•  ์ˆ˜ ์žˆ๊ณ , ๋‹ค์–‘ํ•œ ์‹œ๋„๋ฅผ ์‰ฝ๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋Š” ์ฐฝ์˜์ ์ธ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์ง€๊ธˆ ๋ฐ”๋กœ ๋„ค์ด๋ฒ„ AI ํ•ด์ปคํ†ค 2018์— ์ฐธ์—ฌํ•ด์„œ
์„œ๋กœ์˜ ๊ฒฝํ—˜์„ ๊ณต์œ ํ•˜๊ณ , ๋‹ค์–‘ํ•˜๊ณ  ์ฐฝ์˜์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ด ๋ณด์„ธ์š”!

โ€œ Competition? Itโ€™s not competition Coorperation! โ€
AI Hackathon์—์„œ ์„ธ์ƒ์„ ๋ณ€ํ™”์‹œํ‚ฌ ๋น„์ „์„ ๊ธฐ๋‹ค๋ฆฝ๋‹ˆ๋‹ค.

Leaderboard (๊ฒฐ์„ (์˜จ๋ผ์ธ), ์ง„ํ–‰์ค‘ )

์ฐธ๊ฐ€ ์‹ ์ฒญ

AI๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ๊ด€์‹ฌ ์žˆ๋Š” ๋ถ„์ด๋ผ๋ฉด ๋ˆ„๊ตฌ๋‚˜ ์ฐธ๊ฐ€ ์‹ ์ฒญํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
๊ฐœ์ธ ๋˜๋Š” ํŒ€(์ตœ๋Œ€ 3๋ช…)์œผ๋กœ ์ฐธ๊ฐ€ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ์‹ ์ฒญํผ ์œผ๋กœ ์ฐธ๊ฐ€ ์‹ ์ฒญํ•˜์„ธ์š”!

  • ์‹ ์ฒญ๊ธฐ๊ฐ„:~2018๋…„ 12์›” 30์ผ(์›”)
  • ์ฐธ๊ฐ€ ์‹ ์ฒญ ํผ: https://goo.gl/forms/wElbyX2P6za6tnnC3
  • ์‹ ์ฒญ์ž๊ฐ€ ๋งŽ์„ ๊ฒฝ์šฐ ์‹ฌ์‚ฌ ํ›„ ๊ฐœ๋ณ„ ์•ˆ๋‚ด

์ผ์ •

์ผ์ • ๊ธฐ๊ฐ„ ์žฅ์†Œ
์ฐธ๊ฐ€ ์‹ ์ฒญ
~2018๋…„ 12์›” 30์ผ(์ผ)
์•ฝ 2์ฃผ ์ ‘์ˆ˜ ๋งˆ๊ฐ
์˜ˆ์„  1๋ผ์šด๋“œ
2019๋…„ 1์›” 2์ผ(์ˆ˜) ~ 1์›” 16์ผ(์ˆ˜) 23:59:59
์•ฝ 2์ฃผ ์˜จ๋ผ์ธ
https://hack.nsml.navercorp.com
์˜ˆ์„  2๋ผ์šด๋“œ
2019๋…„ 1์›” 23์ผ(์ˆ˜) 14:00 ~ 2์›” 8์ผ(๊ธˆ) 16:00
์•ฝ 16์ผ ์˜จ๋ผ์ธ
https://hack.nsml.navercorp.com
๊ฒฐ์„ (์˜จ๋ผ์ธ)
2019๋…„ 2์›” 12์ผ(ํ™”) 14:00 ~ 2์›” 20์ผ(์ˆ˜)16:00
์•ฝ 9์ผ ์˜จ๋ผ์ธ
https://hack.nsml.navercorp.com
๊ฒฐ์„ (์˜คํ”„๋ผ์ธ)
2019๋…„ 2์›” 21์ผ(๋ชฉ) ~ 2์›” 22์ผ(๊ธˆ)
1๋ฐ• 2์ผ ๋„ค์ด๋ฒ„ ์ปค๋„ฅํŠธ์›(์ถ˜์ฒœ)

โ€ป ์˜ˆ์„  ๋ฐ ๊ฒฐ์„  ์ฐธ๊ฐ€์ž์—๊ฒŒ๋Š” ๊ฐœ๋ณ„๋กœ ์ฐธ๊ฐ€ ์•ˆ๋‚ด๋“œ๋ฆฝ๋‹ˆ๋‹ค.
ย ย ย ๊ฒฐ์„  ์ฐธ๊ฐ€์ž๋Š” ๋„ค์ด๋ฒ„ ๋ณธ์‚ฌ(๊ทธ๋ฆฐํŒฉํ† ๋ฆฌ, ๋ถ„๋‹น)์— ๋ชจ์—ฌ์„œ ์ปค๋„ฅํŠธ์›(์ถ˜์ฒœ)์œผ๋กœ ํ•จ๊ป˜ ์ด๋™ํ•˜๋ฉฐ
ย ย ย ๋„ค์ด๋ฒ„ ๋ณธ์‚ฌ - ์ปค๋„ฅํŠธ์› ๊ฐ„ ์ด๋™ ์ฐจ๋Ÿ‰ ๋ฐ ๊ฒฐ์„  ๊ธฐ๊ฐ„ ์ค‘ ์ˆ™์‹, ๊ฐ„์‹ ๋“ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

๋Œ€ํšŒ์ข…๋ฃŒ

์ˆœ์œ„ ํŒ€๋ช…
1์œ„ Cheat_Key ํŒ€
2์œ„ Resource_exhausted ํŒ€
3์œ„ snu_CherryPickers ํŒ€

๋ฏธ์…˜

  • ์˜ˆ์„  1์ฐจ : ์†Œ๊ทœ๋ชจ์˜ ๋ผ์ธํ”„๋ Œ์ฆˆ ์ƒํ’ˆ image retrieval
  • ์˜ˆ์„  2์ฐจ / ๊ฒฐ์„ (์˜จ๋ผ์ธ, ์˜คํ”„๋ผ์ธ) : ๋Œ€๊ทœ๋ชจ์˜ ์ผ๋ฐ˜ ์ƒํ’ˆ image retrieval

โ€ป ๋ชจ๋“  ๋ฏธ์…˜์€ NSML ํ”Œ๋žซํผ์„ ์‚ฌ์šฉํ•ด ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค.
ย ย ย NSML์„ ํ†ตํ•ด ๋ฏธ์…˜์„ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์ด ํŠœํ† ๋ฆฌ์–ผ์„ ์ฐธ๊ณ ํ•ด ์ฃผ์„ธ์š”.

์˜ˆ์„  1์ฐจ

์˜ˆ์„  1์ฐจ๋Š” ์†Œ๊ทœ๋ชจ์˜ ๋ผ์ธํ”„๋ Œ์ฆˆ ์ƒํ’ˆ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•œ image retrieval challenge ์ž…๋‹ˆ๋‹ค. Training data๋ฅผ ์ด์šฉํ•˜์—ฌ image retrieval model์„ ํ•™์Šตํ•˜๊ณ , test์‹œ์—๋Š” ๊ฐ query image(์งˆ์˜ ์ด๋ฏธ์ง€)์— ๋Œ€ํ•ด reference images(๊ฒ€์ƒ‰ ๋Œ€์ƒ ์ด๋ฏธ์ง€) ์ค‘์—์„œ ์งˆ์˜ ์ด๋ฏธ์ง€์— ๋‚˜์˜จ ์ƒํ’ˆ๊ณผ ๋™์ผํ•œ ์ƒํ’ˆ๋“ค์„ ์ฐพ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.

Training data

Training data๋Š” ๊ฐ class(์ƒํ’ˆ) ํด๋” ์•ˆ์— ๊ทธ ์ƒํ’ˆ์„ ์ดฌ์˜ํ•œ ์ด๋ฏธ์ง€๋“ค์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.

  • Class: 1,000
  • Total images: 7,104
  • Training data ์˜ˆ์‹œ: Data_example_ph1.zip
    • ์˜ˆ์„  1์ฐจ ํ•™์Šต ๋ฐ์ดํ„ฐ ์ค‘ 10๊ฐœ์˜ ํด๋ž˜์Šค์ด๋ฉฐ, ๊ฐ ํด๋ž˜์Šค์˜ ๋ชจ๋“  ์ด๋ฏธ์ง€๋ฅผ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค.

Test data

Test data๋Š” query image์™€ reference image๋กœ ๋‚˜๋‰˜์–ด์ ธ ์žˆ์Šต๋‹ˆ๋‹ค.

  • Query images: 195
  • Reference images: 1,127
  • Total images: 1,322

์˜ˆ์„  2์ฐจ / ๊ฒฐ์„ (์˜จ๋ผ์ธ, ์˜คํ”„๋ผ์ธ)

์˜ˆ์„  2์ฐจ / ๊ฒฐ์„ (์˜จ๋ผ์ธ, ์˜คํ”„๋ผ์ธ)์€ ๋Œ€๊ทœ๋ชจ์˜ ์ผ๋ฐ˜ ์ƒํ’ˆ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•œ image retrieval challenge ์ž…๋‹ˆ๋‹ค. ์˜ˆ์„  1์ฐจ์™€ ๊ฐ™์€ ๋ฐฉ์‹์ด์ง€๋งŒ, ๋ฐ์ดํ„ฐ์˜ ์ข…๋ฅ˜๊ฐ€ ๋ผ์ธํ”„๋ Œ์ฆˆ๋กœ ํ•œ์ •๋˜์–ด ์žˆ์ง€ ์•Š๊ณ , ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋งŽ์Šต๋‹ˆ๋‹ค.

Training data

Training data๋Š” ๊ฐ class(์ƒํ’ˆ) ํด๋” ์•ˆ์— ๊ทธ ์ƒํ’ˆ์„ ์ดฌ์˜ํ•œ ์ด๋ฏธ์ง€๋“ค์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.

  • Class: 1,383
  • Total images: 73,551
  • Training data ์˜ˆ์‹œ: Data_example_ph2.zip
    • ์˜ˆ์„  2์ฐจ ํ•™์Šต ๋ฐ์ดํ„ฐ ์ค‘ 5๊ฐœ์˜ ํด๋ž˜์Šค์ด๋ฉฐ, ๊ฐ ํด๋ž˜์Šค์˜ ๋Œ€๋ถ€๋ถ„ ์ด๋ฏธ์ง€๋ฅผ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค.

Test data

Test data๋Š” query image์™€ reference image๋กœ ๋‚˜๋‰˜์–ด์ ธ ์žˆ์Šต๋‹ˆ๋‹ค.

  • Query images: 18,027
  • Reference images: 36,748
  • Total images: 54,775

โ€ป ์˜ˆ์„  2์ฐจ์™€ ๊ฒฐ์„ (์˜จ๋ผ์ธ)์—์„œ๋Š” ์ „์ฒด test data์˜ query images ์ค‘ 50%๋งŒ์œผ๋กœ ์ˆœ์œ„๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ฒฐ์„ (์˜คํ”„๋ผ์ธ)์—์„œ ๋‚˜๋จธ์ง€ 50%๋ฅผ ํฌํ•จํ•˜์—ฌ, ์ „์ฒด test data๋กœ ์ตœ์ข… ์ˆœ์œ„๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์กฐ

์˜ˆ์„  1์ฐจ, ์˜ˆ์„  2์ฐจ, ๊ฒฐ์„ (์˜จ๋ผ์ธ, ์˜คํ”„๋ผ์ธ) ๋ชจ๋‘ ๋™์ผํ•ฉ๋‹ˆ๋‹ค.

|-- train
      |-- train_data
            |-- 1141  # ์ƒํ’ˆ ID
                  |-- s0.jpg
                  |-- s1.jpg
                  |-- s2.jpg
                  ...
            |-- 1142 # ์ƒํ’ˆ ID
                  |-- s0.jpg
                  |-- s1.jpg
                  |-- s2.jpg
                  ...
             ...
|-- test
      |-- test_data
            |-- query # ์งˆ์˜ ์ด๋ฏธ์ง€ ํด๋”
                  |-- s0.jpg
                  |-- s1.jpg
                  |-- s2.jpg
                  ...
            |-- reference # ๊ฒ€์ƒ‰ ๋Œ€์ƒ ์ด๋ฏธ์ง€ ํด๋”
                  |-- s0.jpg
                  |-- s1.jpg
                  |-- s2.jpg
                  ...
            ...

โ€ป ํด๋” ์ด๋ฆ„์€ ์œ„์™€ ๊ฐ™์ง€๋งŒ, ํŒŒ์ผ ์ด๋ฆ„์€ ์œ„ ์˜ˆ์‹œ์™€ ๋‹ค๋ฅผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํ‰๊ฐ€์ง€ํ‘œ

  • ํ‰๊ฐ€์ง€ํ‘œ๋Š” image retrieval ๋ถ„์•ผ์—์„œ ํ”ํžˆ ์“ฐ์ด๋Š” mAP(mean average precision)์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
    • ์˜ˆ์„  1์ฐจ์—์„œ๋Š” mAP๋กœ score๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.
    • ์˜ˆ์„  2์ฐจ์™€ ๊ฒฐ์„ (์˜จ๋ผ์ธ, ์˜คํ”„๋ผ์ธ)์—์„œ๋Š” ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์˜ ๊ทœ๋ชจ๊ฐ€ ํฌ๊ธฐ๋•Œ๋ฌธ์—, ์ƒ์œ„ 1000๊ฐœ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋งŒ ๊ณ ๋ คํ•˜๋Š” mAP@1000์œผ๋กœ score๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.
  • ๋™์ ์ž๊ฐ€ ๋‚˜์˜ฌ ๊ฒฝ์šฐ์—๋Š” Recall@k๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์ˆœ์œ„๋ฅผ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

For the retrieval task, we use the Recall@K metric. Each test image (query) first retrieves K nearest neighbors from the test set and receives score 1 if an image of the same class is retrieved among the K nearest neighbors and 0 otherwise. Recall@K averages this score over all the images.

Baseline in NSML

  • NSML์— ์ ์‘ํ•˜๋Š”๋ฐ ๋„์›€์„ ์ฃผ๊ธฐ ์œ„ํ•ด, ์˜ˆ์„  1๋ผ์šด๋“œ์—๋งŒ ๋ฒ ์ด์Šค๋ผ์ธ ๋ชจ๋ธ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
  • ์˜ˆ์„  2๋ผ์šด๋“œ ๋ถ€ํ„ฐ๋Š” train ๋ฐ test ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๊ฐ€ ๋งค์šฐ ์ปค์ง€๊ธฐ ๋•Œ๋ฌธ์—, ๋ฒ ์ด์Šค๋ผ์ธ ๋ชจ๋ธ์ฒ˜๋Ÿผ ๋ฐ์ดํ„ฐ๋ฅผ ํ•œ๋ฒˆ์— ์ฝ๊ณ  ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ์‹์€ OOM(Out Of Memory) ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ฐ์ดํ„ฐ๋ฅผ batch ๋‹จ์œ„๋กœ ์ฝ๊ณ  train ๋ฐ inferenceํ•˜๋Š” ๋ฐฉ์‹์„ ์ถ”์ฒœ๋“œ๋ฆฝ๋‹ˆ๋‹ค.
    • E.g. tf.data.Dataset in TensorFlow, ImageDataGenerator in Keras, DataLoader in PyTorch

Baseline model ์ •๋ณด

  • Deep learning framework: Keras
  • Docker ์ด๋ฏธ์ง€: nsml/ml:cuda9.0-cudnn7-tf-1.11torch0.4keras2.2
  • Python 3.6
  • ํ‰๊ฐ€์ง€ํ‘œ: mAP
  • Epoch=100์œผ๋กœ ํ•™์Šตํ•œ ๊ฒฐ๊ณผ: mAP 0.0116

NSML

  1. ์‹คํ–‰๋ฒ•

    • https://hack.nsml.navercorp.com/download ์—์„œ ํ”Œ๋žซํผ์— ๋งž๋Š” nsml์„ ๋‹ค์šด๋ฐ›์Šต๋‹ˆ๋‹ค.

    • nsml run๋ช…๋ น์–ด๋ฅผ ์ด์šฉํ•ด์„œ main.py๋ฅผ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค.

      $ nsml run -d ir_ph1_v2 -e main.py
  2. ์ œ์ถœํ•˜๊ธฐ

    • ์„ธ์…˜์˜ ๋ชจ๋ธ ์ •๋ณด๋ฅผ ํ™•์ธํ•ฉ๋‹ˆ๋‹ค.
      $ nsml model ls [session]
    • ํ™•์ธํ•œ ๋ชจ๋ธ๋กœ submit ๋ช…๋ น์–ด๋ฅผ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค.
      $ nsml submit [session] [checkpoint]
  3. web ์—์„œ ์ ์ˆ˜๋ฅผ ํ™•์ธํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค.

Infer ํ•จ์ˆ˜

Submit์„ ํ•˜๊ธฐ์œ„ํ•ด์„œ๋Š” infer()ํ•จ์ˆ˜์—์„œ [๋‹ค์Œ]๊ณผ ๊ฐ™์ด return ํฌ๋งท์„ ์ •ํ•ด์ค˜์•ผํ•ฉ๋‹ˆ๋‹ค.

๋Œ€๋žต์ ์ธ ํ˜•ํƒœ๋Š” ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

[
    (0, ('query_0', ['refer_12', 'refer_3', 'refer_35', 'refer_87', 'refer_152', 'refer_2', ...])),
    (1, ('query_1', ['refer_2', 'refer_25', 'refer_13', 'refer_7', 'refer_64', 'refer_243', ...])),
     ...
]
  • ์ตœ์ข… return ํ˜•ํƒœ๋Š” list๋กœ ๋ฐ˜ํ™˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
  • (0, ('query_0', ['refer_12', 'refer_3', 'refer_35', 'refer_87', 'refer_152', 'refer_2', ...])) tuple
    • ์œ„ ํ˜•ํƒœ์˜ tuple์˜ ์ฒซ๋ฒˆ์งธ ์ˆซ์ž ๊ฐ’(์œ„์˜ ์˜ˆ์ œ์—์„œ๋Š” 0)์€ query ์ด๋ฏธ์ง€์˜ ๋ฒˆํ˜ธ์ด๋ฉฐ, ํ‰๊ฐ€์™€๋Š” ๋ฌด๊ด€ํ•ฉ๋‹ˆ๋‹ค.
  • ('query_0', ['refer_12', 'refer_3', 'refer_35', 'refer_87', 'refer_152', 'refer_2', ...]) tuple
    • query_0๋Š” query ์ด๋ฏธ์ง€ test_data/query/query_0.jpg์—์„œ ํ™•์žฅ์ž๋ฅผ ๋บ€ ํŒŒ์ผ๋ช…์ž…๋‹ˆ๋‹ค.
    • refer_12๋Š” reference ์ด๋ฏธ์ง€ test_data/reference/refer_12.jpg์—์„œ ํ™•์žฅ์ž๋ฅผ ๋บ€ ํŒŒ์ผ๋ช…์ž…๋‹ˆ๋‹ค.
    • ['refer_12', 'refer_3', 'refer_35', 'refer_87', 'refer_152', 'refer_2', ...]์€ ๋ชจ๋“  reference ์ด๋ฏธ์ง€๋“ค์„ query_0์™€ ๊ฐ€๊นŒ์šด ์ˆœ์œผ๋กœ ์ •๋ ฌํ•œ list์ž…๋‹ˆ๋‹ค. (๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ์˜ ranking list)
    • ์˜ˆ์„  1์ฐจ์—์„œ๋Š” mAP๋กœ score๋ฅผ ๊ณ„์‚ฐํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ranking list์— ์ „์ฒด reference ์ด๋ฏธ์ง€๋“ค์ด ์กด์žฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
    • ์˜ˆ์„  2์ฐจ, ๊ฒฐ์„ (์˜จ๋ผ์ธ, ์˜คํ”„๋ผ์ธ)์—์„œ๋Š” mAP@1000์œผ๋กœ score๋ฅผ ๊ณ„์‚ฐํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ranking list์— 1000๊ฐœ์˜ reference ์ด๋ฏธ์ง€๋งŒ ์กด์žฌํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.

์ง„ํ–‰ ๋ฐฉ์‹ ๋ฐ ์‹ฌ์‚ฌ ๊ธฐ์ค€

์˜ˆ์„ 

  • ์˜ˆ์„  ์ฐธ๊ฐ€ํŒ€์—๊ฒŒ๋Š” ์˜ˆ์„  ๊ธฐ๊ฐ„์ค‘ ๋งค์ผ ์‹œ๊ฐ„๋‹น 60-120 NSML ํฌ๋ ˆ๋”ง์„ ์ง€๊ธ‰ํ•ฉ๋‹ˆ๋‹ค. (๋ˆ„์  ์ตœ๋Œ€์น˜๋Š” 2,880์ด๋ฉฐ ๋ฆฌ์†Œ์Šค ์ƒํ™ฉ์— ๋”ฐ๋ผ ์ถ”๊ฐ€์ง€๊ธ‰๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.)
  • ํŒ€ ์ฐธ๊ฐ€์ž์ผ ๊ฒฝ์šฐ ๋Œ€ํ‘œ ํŒ€์›์—๊ฒŒ๋งŒ ์ง€๊ธ‰ํ•ฉ๋‹ˆ๋‹ค.
  • ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ํฌ๋ ˆ๋”ง์€ ๋ˆ„์ ๋ฉ๋‹ˆ๋‹ค.

์˜ˆ์„  1๋ผ์šด๋“œ

  • ์ผ์ • : 2019. 1. 2 ~ 2019. 1. 16
  • NSML ๋ฆฌ๋”๋ณด๋“œ ์ˆœ์œ„๋กœ 2๋ผ์šด๋“œ ์ง„์ถœ์ž ์„ ์ • (2๋ผ์šด๋“œ ์ง„์ถœํŒ€ 50ํŒ€ ์„ ๋ฐœ,์ˆœ์œ„๊ฐ€ ๋‚ฎ์œผ๋ฉด ์ž๋™ ์ปท์˜คํ”„)

์˜ˆ์„  2๋ผ์šด๋“œ

  • ์ผ์ • : 2019. 1. 23 โ€“ 2019. 2. 8
  • NSML ๋ฆฌ๋”๋ณด๋“œ ์ˆœ์œ„๋กœ ๊ฒฐ์„  ์ง„์ถœ์ž ์„ ์ • (๊ฒฐ์„  ์ง„์ถœ์ž ์•ฝ 40ํŒ€ ์„ ๋ฐœ)
  • ์ „์ฒด ์ธ์›์— ๋”ฐ๋ผ ๊ฒฐ์„  ์ง„์ถœํŒ€ ์ˆ˜์— ๋ณ€๋™์ด ์žˆ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ฒฐ์„ 

๊ฒฐ์„  (์˜จ๋ผ์ธ)

  • ์ผ์ • : 2019. 2. 12 โ€“ 2019. 2. 20
  • ์˜จ๋ผ์ธ ๊ฒฐ์„  ๊ณผ์ •์€ ์˜คํ”„๋ผ์ธ ๊ฒฐ์„  ์ „, ๋ชจ๋ธ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•จ์ž…๋‹ˆ๋‹ค.
  • ์˜จ๋ผ์ธ ๊ฒฐ์„ ์„ ๊ฑฐ์น˜๋”๋ผ๋„ ๋ณ„๋„์˜ ์ปท์˜คํ”„ ์—†์ด ๋ชจ๋“  ๊ฒฐ์„  ์ฐธ์—ฌํŒ€์ด ์˜คํ”„๋ผ์ธ ๊ฒฐ์„ ์— ์ฐธ์—ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ฒฐ์„  (์˜คํ”„๋ผ์ธ)

  • ์ผ์ • : 2019. 2. 21 โ€“ 2019. 2. 22 1๋ฐ• 2์ผ๊ฐ„ ์ถ˜์ฒœ ์ปค๋„ฅํŠธ์›์—์„œ ์ง„ํ–‰
  • ์ตœ์ข… ์šฐ์Šน์ž๋Š” NSML ๋ฆฌ๋”๋ณด๋“œ ์ˆœ์œ„(1์œ„, 2์œ„, 3์œ„)๋กœ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
  • ๊ฒฐ์„  ์ฐธ๊ฐ€์ž์—๊ฒŒ ์ œ๊ณตํ•˜๋Š” ํฌ๋ ˆ๋”ง์€ ์ถ”ํ›„ ๊ณต์ง€ ์˜ˆ์ •์ž…๋‹ˆ๋‹ค.

โ€ป 1 NSML ํฌ๋ ˆ๋”ง์œผ๋กœ NSML GPU๋ฅผ 1๋ถ„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
ย ย ย 10 NSML ํฌ๋ ˆ๋”ง = GPU 1๊ฐœ * 10๋ถ„ = GPU 2๊ฐœ * 5๋ถ„ ์‚ฌ์šฉ

โ€ป ์˜ˆ์„ , ๊ฒฐ์„  ์ง„์ถœ์ž๋Š” ๊ฐœ๋ณ„ ์•ˆ๋‚ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

์‹œ์ƒ ๋ฐ ํ˜œํƒ

  • ๊ฒฐ์„  ์ง„์ถœ์ž์—๊ฒŒ๋Š” ํ‹ฐ์…”์ธ  ๋“ฑ์˜ ๊ธฐ๋…ํ’ˆ ์ฆ์ •
  • ์šฐ์ˆ˜ ์ฐธ๊ฐ€์ž ์ค‘ ๋„ค์ด๋ฒ„ ์ž…์‚ฌ ์ง€์› ์‹œ ํ˜œํƒ

FAQ

  • ์ž์ฃผ ๋ฌธ์˜ํ•˜๋Š” ๋‚ด์šฉ์„ ํ™•์ธํ•ด ๋ณด์„ธ์š”! FAQ.md

๋ฌธ์˜

  • ํ•ด์ปคํ†ค ๊ด€๋ จ ๋ฌธ์˜๋Š” Q&A issue page๋ฅผ ํ†ตํ•ด ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๊ด€๋ จ ๋ฌธ์˜๋Š” Tag๋ฅผ ๋‹ฌ์•„ ์ฝ”๋ฉ˜ํŠธ๋ฅผ ๋‚จ๊ฒจ์ฃผ์„ธ์š”.
  • Q&A ๋ฌธ์˜ ๋‹ต๋ณ€ ์‹œ๊ฐ„์€ ์›”-๊ธˆ 10:00-19:00 ์ž…๋‹ˆ๋‹ค.

License

Copyright 2018 NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 93.5%
  • Python 6.5%