Zhengxue Wang1, Zhiqiang Yan✉1, Jinshan Pan1, Guangwei Gao2, Kai Zhang3, Jian Yang✉1
1Nanjing University of Science and Technology
2Nanjing University of Posts and Telecommunications
3Nanjing University
Overview of DORNet. Given
Python==3.11.5
PyTorch==2.1.0
numpy==1.23.5
torchvision==0.16.0
scipy==1.11.3
Pillow==10.0.1
tqdm==4.65.0
scikit-image==0.21.0
mmcv-full==1.7.2
Pretrained models on RGB-D-D can be found in checkpoints (The remaining pre-trained models will be released once the paper is accepted).
Train on real-world RGB-D-D and TOFDSR
> python train.py
Train on synthetic NYU-v2
> python train.py --scale 4
Train on real-world RGB-D-D and TOFDSR
> python train.py --tiny_model
Train on synthetic NYU-v2
> python train.py --scale 4 --tiny_model
Test on real-world RGB-D-D and TOFDSR
> python test.py
Test on synthetic NYU-v2
> python test.py --scale 4
Test on real-world RGB-D-D and TOFDSR
> python test.py --tiny_model
Test on synthetic NYU-v2
> python test.py --scale 4 --tiny_model
Complexity on RGB-D-D (w/o Noisy) tested by a 4090 GPU. A larger circle diameter indicates a higher inference time.
Visual results on the real-world RGB-D-D dataset (w/o Noise).