Skip to content

Hunyuan-PromptEnhancer/PromptEnhancer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

27 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

PromptEnhancer: A Simple Approach to Enhance Text-to-Image Models via Chain-of-Thought Prompt Rewriting

Linqing Wang Β· Ximing Xing Β· Yiji Cheng Β· Zhiyuan Zhao Β· Donghao Li Β· Tiankai Hang Β· Zhenxi Li Β· Jiale Tao Β· QiXun Wang Β· Ruihuang Li Β· Comi Chen Β· Xin Li Β· Mingrui Wu Β· Xinchi Deng Β· Shuyang Gu Β· Chunyu Wang† Β· Qinglin Lu*

Tencent Hunyuan

†Project Lead Β· *Corresponding Author

arXiv Zhihu HuggingFace Model HuggingFace Model T2I-Keypoints-Eval Dataset Homepage HunyuanImage2.1 Code HunyuanImage2.1 Model


PromptEnhancer Teaser

Overview

Hunyuan-PromptEnhancer is a prompt rewriting utility that supports both Text-to-Image generation and Image-to-Image editing. It restructures input prompts while preserving original intent, producing clearer, structured prompts for downstream image generation tasks.

Key Features:

  • Dual-mode support: Text-to-Image prompt enhancement and Image-to-Image editing instruction refinement with visual context
  • Intent preservation: Maintains all key elements (subject, action, style, layout, attributes, etc.) across rewriting
  • Robust parsing: Multi-level fallback mechanism ensures reliable output
  • Flexible deployment: Supports full-precision (7B/32B), quantized (GGUF), and vision-language models

πŸ”₯πŸ”₯πŸ”₯Updates

Installation

Option 1: Standard Installation (Recommended)

pip install -r requirements.txt

Option 2: GGUF Installation (For quantized models with CUDA support)

chmod +x script/install_gguf.sh && ./script/install_gguf.sh

πŸ’‘ Tip: Choose GGUF installation if you want faster inference with lower memory usage, especially for the 32B model.

Model Download

🎯 Quick Start

For most users, we recommend starting with the PromptEnhancer-7B model:

# Download PromptEnhancer-7B (13GB) - Best balance of quality and efficiency
huggingface-cli download tencent/HunyuanImage-2.1/reprompt --local-dir ./models/promptenhancer-7b

πŸ“Š Model Comparison & Selection Guide

Model Size Quality Memory Best For
PromptEnhancer-7B 13GB High 8GB+ Most users, balanced performance
PromptEnhancer-32B 64GB Highest 32GB+ Research, highest quality needs
32B-Q8_0 (GGUF) 35GB Highest 35GB+ High-end GPUs (H100, A100)
32B-Q6_K (GGUF) 27GB Excellent 27GB+ RTX 4090, RTX 5090
32B-Q4_K_M (GGUF) 20GB Good 20GB+ RTX 3090, RTX 4080

Standard Models (Full Precision)

# PromptEnhancer-7B (recommended for most users)
huggingface-cli download tencent/HunyuanImage-2.1/reprompt --local-dir ./models/promptenhancer-7b

# PromptEnhancer-32B (for highest quality)
huggingface-cli download PromptEnhancer/PromptEnhancer-32B --local-dir ./models/promptenhancer-32b

# PromptEnhancer-Img2Img-Edit (for image editing tasks)
huggingface-cli download PromptEnhancer/PromptEnhancer-Img2img-Edit --local-dir ./models/promptenhancer-img2img-edit

GGUF Models (Quantized - Memory Efficient)

Choose one based on your GPU memory:

# Q8_0: Highest quality (35GB)
huggingface-cli download mradermacher/PromptEnhancer-32B-GGUF PromptEnhancer-32B.Q8_0.gguf --local-dir ./models

# Q6_K: Excellent quality (27GB) - Recommended for RTX 4090
huggingface-cli download mradermacher/PromptEnhancer-32B-GGUF PromptEnhancer-32B.Q6_K.gguf --local-dir ./models

# Q4_K_M: Good quality (20GB) - Recommended for RTX 3090/4080
huggingface-cli download mradermacher/PromptEnhancer-32B-GGUF PromptEnhancer-32B.Q4_K_M.gguf --local-dir ./models

πŸš€ Performance Tip: GGUF models offer 50-75% memory reduction with minimal quality loss. Use Q6_K for the best quality/memory trade-off.

Quickstart

Using HunyuanPromptEnhancer (Text-to-Image)

from inference.prompt_enhancer import HunyuanPromptEnhancer

models_root_path = "./models/promptenhancer-7b"

enhancer = HunyuanPromptEnhancer(models_root_path=models_root_path, device_map="auto")

# Enhance a prompt (Chinese or English)
user_prompt = "Third-person view, a race car speeding on a city track..."
new_prompt = enhancer.predict(
    prompt_cot=user_prompt,
    # Default system prompt is tailored for image prompt rewriting; override if needed
    temperature=0.7,   # >0 enables sampling; 0 uses deterministic generation
    top_p=0.9,
    max_new_tokens=256,
)

print("Enhanced:", new_prompt)

Using PromptEnhancerImg2Img (Image Editing)

For image editing tasks where you want to enhance editing instructions based on input images:

from inference.prompt_enhancer_img2img import PromptEnhancerImg2Img

# Initialize the image-to-image prompt enhancer
enhancer = PromptEnhancerImg2Img(
    model_path="./models/your-model",
    device_map="auto"
)

# Enhance an editing instruction with image context
edit_instruction = "Remove the watermark from the bottom"
image_path = "./examples/sample_image.png"

enhanced_prompt = enhancer.predict(
    edit_instruction=edit_instruction,
    image_path=image_path,
    temperature=0.1,
    top_p=0.9,
    max_new_tokens=2048
)

print("Enhanced editing prompt:", enhanced_prompt)

Using GGUF Models (Quantized, Faster)

from inference.prompt_enhancer_gguf import PromptEnhancerGGUF

# Auto-detects Q8_0 model in models/ folder
enhancer = PromptEnhancerGGUF(
    model_path="./models/PromptEnhancer-32B.Q8_0.gguf",  # Optional: auto-detected
    n_ctx=1024,        # Context window size
    n_gpu_layers=-1,   # Use all GPU layers
)

# Enhance a prompt
user_prompt = "woman in jungle"
enhanced_prompt = enhancer.predict(
    user_prompt,
    temperature=0.3,
    top_p=0.9,
    max_new_tokens=512,
)

print("Enhanced:", enhanced_prompt)

Command Line Usage (GGUF)

# Simple usage - auto-detects model in models/ folder
python inference/prompt_enhancer_gguf.py

# Or specify model path
GGUF_MODEL_PATH="./models/PromptEnhancer-32B.Q8_0.gguf" python inference/prompt_enhancer_gguf.py

GGUF Model Benefits

πŸš€ Why use GGUF models?

  • Memory Efficient: 50-75% less VRAM usage compared to full precision models
  • Faster Inference: Optimized for CPU and GPU acceleration with llama.cpp
  • Quality Preserved: Q8_0 and Q6_K maintain excellent output quality
  • Easy Deployment: Single file format, no complex dependencies
  • GPU Acceleration: Full CUDA support for high-performance inference
Model Size Quality VRAM Usage Best For
Q8_0 35GB Highest ~35GB High-end GPUs (H100, A100)
Q6_K 27GB Excellent ~27GB RTX 4090, RTX 5090
Q4_K_M 20GB Good ~20GB RTX 3090, RTX 4080

Usage Comparison

Model Input Type Use Case Model Backend
HunyuanPromptEnhancer Text only Text-to-Image generation Transformers (7B/32B)
PromptEnhancerImg2Img Text + Image Image editing tasks Transformers (32B)
PromptEnhancerGGUF Text only Memory-efficient T2I llama.cpp (quantized)

Parameters

Standard Models (Transformers)

  • models_root_path: Local path or repo id; supports trust_remote_code models.
  • device_map: Device mapping (default auto).
  • predict(...):
    • prompt_cot (str): Input prompt to rewrite.
    • sys_prompt (str): Optional system prompt; a default is provided for image prompt rewriting.
    • temperature (float): >0 enables sampling; 0 for deterministic generation.
    • top_p (float): Nucleus sampling threshold (effective when sampling).
    • max_new_tokens (int): Maximum number of new tokens to generate.

GGUF Models

  • model_path (str): Path to GGUF model file (auto-detected if in models/ folder).
  • n_ctx (int): Context window size (default: 8192, recommended: 1024 for short prompts).
  • n_gpu_layers (int): Number of layers to offload to GPU (-1 for all layers).
  • verbose (bool): Enable verbose logging from llama.cpp.

Image-to-Image Models (PromptEnhancerImg2Img)

  • model_path (str): Path to the pretrained Qwen2.5-VL model.
  • device_map (str): Device mapping for model loading (default: auto).
  • predict(...):
    • edit_instruction (str): Original editing instruction.
    • image_path (str): Path to the input image file.
    • sys_prompt (str): Optional system prompt (uses default if None).
    • temperature (float): Sampling temperature (default: 0.1).
    • top_p (float): Nucleus sampling threshold (default: 0.9).
    • max_new_tokens (int): Maximum tokens to generate (default: 2048).

Citation

If you find this project useful, please consider citing:

@article{promptenhancer,
  title={PromptEnhancer: A Simple Approach to Enhance Text-to-Image Models via Chain-of-Thought Prompt Rewriting},
  author={Wang, Linqing and Xing, Ximing and Cheng, Yiji and Zhao, Zhiyuan and Donghao, Li and Tiankai, Hang and Zhenxi, Li and Tao, Jiale and Wang, QiXun and Li, Ruihuang and Chen, Comi and Li, Xin and Wu, Mingrui and Deng, Xinchi and Gu, Shuyang and Wang, Chunyu and Lu, Qinglin},
  journal={arXiv preprint arXiv:2509.04545},
  year={2025}
}

Acknowledgements

We would like to thank the following open-source projects and communities for their contributions to open research and exploration: Transformers and HuggingFace.

Contact

If you would like to leave a message for our R&D and product teams, Welcome to contact our open-source team. You can also contact us via email ([email protected]).

Github Star History

Star History Chart

About

PromptEnhancer is a prompt-rewriting tool, refining prompts into clearer, structured versions for better image generation.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •