Chaindesk provides a user-friendly solution to quickly setup a semantic search system over your personal data without any technical knowledge.
- Load data from anywhere
- Raw text
 - Web page
 - Files
- Word
 - Excel
 - Powerpoint
 - Markdown
 - Plain Text
 
 - Web Site (coming soon)
 - Notion (coming soon)
 - Airtable (coming soon)
 
 - No-code: User-friendly interface to manage your datastores and chat with your data
 - Securized API endpoint for querying your data
 - Auto sync data sources (coming soon)
 - Auto generates a ChatGPT Plugin for each datastore
 
- Vector Datbase: Qdrant
 - Embeddigs: Openai's text-embedding-ada-002
 - Chunk size: 256 tokens
 
- Next.js
 - Joy UI
 - LangchainJS
 - PostgreSQL
 - Prisma
 - Qdrant
 
Inspired by the ChatGPT Retrieval Plugin.
Minimum requirements to run the projects locally
- Node.js v18
 - Postgres Database
 - Redis
 - Qdrant
 - GitHub App (NextAuth)
 - Email Provider (NextAuth)
 - OpenAI API Key
 - AWS S3 Credentials
 
cp .dev/databerry/app.env.example .dev/databerry/app.env
# Add your own OPENAI_API_KEY
pnpm docker:compose up
# Alternatively run app and services separately
pnpm docker:compose:deps up
pnpm docker:compose:app up
# create s3 bucket
# go to http://localhost:9090 and create bucket databerry-dev
# set bucket access policy to public
# might need to add 127.0.0.1 minio to /etc/hosts in order to access public s3 files through http://minio...
# Dev emails inbox (maildev)
# visit http://localhost:1080You can fully rebuild dockers with :
pnpm docker:compose up --build