
when_all_range Sender Adaptors
Document #: PXXXXR0
Date: 2025-10-08
Project: Programming Language C++
Audience: Library Working Group
Reply-to: Lixin Wei

<lixin.wei@gmail.com>

1 Abstract
This paper proposes to add a new sender adaptor algorithm when_all_range to the std::execution namespace,
targeting C++29. It accepts a std::ranges::range of senders, allowing user to wait for multiple senders which
are only known at runtime.

2 Description
2.1 The Problem Now
[P2300R10] provides std::execution::when_all, which allows user to wait multiple senders which are known
at compile time. But there still lacks a way to wait for multiple senders which are only known at runtime.

For example:
int main(int argc, char** argv) {
int runtime_known_number = std::atoi(argv[1]);
std::vector<MySender> senders;
for (int i = 0; i < runtime_known_number; ++i) {
senders.push_back(CreateAsyncWork());

}

ex::when_all(senders); // this line will fail to compile
}

In the above example, when_all doesn’t work, because its signature is when_all(ex::sender auto&&... senders)
which requires the number of senders to be known at compile time. We can’t pass a dynamic container to it.

2.2 Proposed Solution
To resolve this problem, this paper proposes to add a new sender adaptor algorithm called when_all_range to
the std::execution namespace, which accepts a std::ranges::range of senders.
struct when_all_range_t {

// qualifiers omitted for simplicity
ex::sender auto operator()(std::ranges::range Range auto&& range);

};
inline constexpr when_all_range_t when_all_range{};

Like when_all, when_all_range adapts all senders in the range into a sender that completes when all input
senders have completed. when_all_range only accepts senders with a single value completion signature and on
success concatenates all the input senders’ value result datums into a new std::ranges::range and pass it to
its own value completion operation.

1

mailto:lixin.wei@gmail.com

Let’s call the range passed to the value completion operation of the returned sender as output range.

The output range should conform std::ranges::random_access_range. The i-th element in the output
range should be the value result datum of the i-th sender(iteration order) in the input range.
using SenderType = decltype(ex::just(1));
std::vector<SenderType> senders;
for (int i = 0; i < 10; ++i) {
senders.emplace(ex::just(i));

}
ex::when_all_range(std::move(senders)) |
ex::then([](std::ranges::random_access_range auto&& res) {
for (int i = 0; i < 10; ++i) {

// the result order should be the same as the input order
assert(res[i] == i);

}
});

To emphasize, even though the input range is not a std::ranges::random_access_range, the output range
should still conform std::ranges::random_access_range. Where the output order is the same as the input’s
iteration order.
using SenderType = decltype(ex::just(1));
// assume we have a comparator for `ex::just(i)` which sorts them by `i`.
std::set<SenderType> senders;
for (int i = 0; i < 10; ++i) {
senders.emplace(ex::just(i));

}

// input range is not a `std::ranges::random_access_range` now
ex::when_all_range(std::move(senders)) |
ex::then([](std::ranges::random_access_range auto&& res) {
for (int i = 0; i < 10; ++i) {

// the result order should be the same as the input's iteration order
assert(res[i] == i);

}
});

3 Proposed Wording
[Editor’s note: Change [execution.syn] as follows:]
struct when_all_t { unspecified };
struct when_all_with_variant_t { unspecified };
struct into_variant_t { unspecified };
struct when_all_range_t { unspecified };

inline constexpr when_all_t when_all{};
inline constexpr when_all_with_variant_t when_all_with_variant{};
inline constexpr into_variant_t into_variant{};
inline constexpr when_all_range_t when_all_range{};

4 References
[P2300R10] Eric Niebler, Michał Dominiak, Georgy Evtushenko, Lewis Baker, Lucian Radu Teodorescu, Lee

Howes, Kirk Shoop, Michael Garland, Bryce Adelstein Lelbach. 2024-06-28. ‘std::execution‘.

2

https://wg21.link/p2300r10

https://wg21.link/p2300r10

3

https://wg21.link/p2300r10

	Abstract
	Description
	The Problem Now
	Proposed Solution

	Proposed Wording
	References

