when_all range Sender Adaptors

Document #: PXXXXR0

Date: 2025-10-08

Project: Programming Language C++
Audience: Library Working Group
Reply-to: Lixin Wei

<lixin.wei@gmail.com>

1 Abstract

This paper proposes to add a new sender adaptor algorithm when_all_range to the std: :execution namespace,
targeting C+4-29. It accepts a std: :ranges: :range of senders, allowing user to wait for multiple senders which
are only known at runtime.

2 Description

2.1 The Problem Now

[P2300R10] provides std: :execution: :when_all, which allows user to wait multiple senders which are known
at compile time. But there still lacks a way to wait for multiple senders which are only known at runtime.

For example:

int main(int argc, char** argv) {
int runtime_known_number = std::atoi(argv([1i]);
std::vector<MySender> senders;
for (int i = 0; i < runtime_known_number; ++i) {
senders.push_back(CreateAsyncWork()) ;

}
ex::when_all(senders); // this line will fatl to compile
}
In the above example, when_all doesn’t work, because its signature is when_all (ex: :sender auto&&... senders)

which requires the number of senders to be known at compile time. We can’t pass a dynamic container to it.

2.2 Proposed Solution

To resolve this problem, this paper proposes to add a new sender adaptor algorithm called when_all_range to
the std::execution namespace, which accepts a std: :ranges: :range of senders.

struct when_all_range_t {

// qualifiers omitted for simplicity

ex::sender auto operator() (std::ranges::range Range auto&& range) ;
s

inline constexpr when_all_range_t when_all_range{};

Like when_all, when_all_range adapts all senders in the range into a sender that completes when all input
senders have completed. when_all_range only accepts senders with a single value completion signature and on
success concatenates all the input senders’ value result datums into a new std: :ranges: :range and pass it to
its own value completion operation.

mailto:lixin.wei@gmail.com

Let’s call the range passed to the value completion operation of the returned sender as output range.

The output range should conform std::ranges: :random_access_range. The i-th element in the output
range should be the value result datum of the i-th sender(iteration order) in the input range.

using SenderType = decltype(ex::just(1));
std: :vector<SenderType> senders;
for (int 1 = 0; i < 10; ++i) {
senders.emplace(ex::just(i));
}
ex::when_all_range(std::move(senders)) |
ex::then([] (std::ranges: :random_access_range auto&& res) {
for (int i = 0; i < 10; ++i) {
// the result order should be the same as the input order
assert(res[i] == i);
}
1)

To emphasize, even though the input range is not a std::ranges::random_access_range, the output range
should still conform std: :ranges: :random_access_range. Where the output order is the same as the input’s
iteration order.

using SenderType = decltype(ex::just(1));
// assume we have a comparator for “ez::just(i) which sorts them by i .
std: :set<SenderType> senders;
for (dnt i = 0; i < 10; ++i) {
senders.emplace(ex::just(i));

3

// input range is not a “std::ranges::random_access_range now
ex::when_all_range(std: :move(senders)) |
ex::then([] (std::ranges: :random_access_range auto&& res) {
for (dnt i = 0; i < 10; ++i) {
// the result order should be the same as the input's iteration order
assert(res[i] == i);
}
3);

3 Proposed Wording

[Editor’s note: Change [execution.syn] as follows: |

struct when_all_t { unspecified };

struct when_all_with_variant_t { unspecified };
struct into_variant_t { unspecified };

struct when_all_range _t { unspecified };

inline constexpr when_all_t when_all{};

inline constexpr when_all_with_variant_t when_all_with_variant{};
inline constexpr into_variant_t into_variant{};

inline constexpr when_all_range_ t when_all_range{};

4 References

[P2300R10] Eric Niebler, Michal Dominiak, Georgy Evtushenko, Lewis Baker, Lucian Radu Teodorescu, Lee
Howes, Kirk Shoop, Michael Garland, Bryce Adelstein Lelbach. 2024-06-28. ‘std::execution’.

https://wg21.link/p2300r10

https://wg21.link /p2300r10

https://wg21.link/p2300r10

	Abstract
	Description
	The Problem Now
	Proposed Solution

	Proposed Wording
	References

