

The Graph – Horizon Update
13/08/25

Trust
Security

Smart Contract Audit

Trust Security The Graph – Horizon Update

Executive summary

Findings

Severity Total Fixed Acknowledged

High 3 3 -

Medium 3 3 -

Low 10 4 6

Centralization score

Centralized Decentralized

Signature

Category Service Platform

Auditor Trust

Time period 09/06/25-26/06/25

3, High

3,
Medium

10, Low

FINDINGS

Trust Security The Graph – Horizon Update

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 4

Versioning 4

Contact 4

INTRODUCTION 5

Scope 5

Repository details 5

About Trust Security 5

About the Auditors 6

Disclaimer 6

Methodology 6

QUALITATIVE ANALYSIS 7

FINDINGS 8

High severity findings 8
TRST-H-1 Service providers would not be able to collect indexing fees when agreement is cancelled

by payer 8
TRST-H-2 Anyone may collect the indexing fees of an indexer 9
TRST-H-3 Attacker can avoid payment for services by crafting a malicious agreement 9

Medium severity findings 11
TRST-M-1 Wrong TYPEHASH string is used for agreement updates, limiting functionality 11
TRST-M-2 Collection for an elapsed or canceled agreement could be wrong 11
TRST-M-3 Updates could be submitted in unexpected order leading to deficiencies in payment 13

Low severity findings 15
TRST-L-1 If voteTimeLimit is set to a large value, votes would not be able to be passed 15
TRST-L-2 The indexer may not be able to collect fees if they are not programmed to release the

allocations 15
TRST-L-3 Attacker can block new agreements from being created 16
TRST-L-4 A disputed transaction may not be fully identifiable by the given parameters 16
TRST-L-5 The RecurringCollector could narrow collection value by more than intended 17
TRST-L-6 The Agreement metadata version is not checked properly 17
TRST-L-7 The indexer can time update() and collect() calls to change historic payments 18
TRST-L-8 RecurringCollector agreements cannot be revoked leading to functionality limitations 18
TRST-L-9 An agreement may not be cancelled when the matching allocation is closed 19
TRST-L-10 Rewards will be distributed for zero-epoch allocations 19

Additional recommendations 21

Trust Security The Graph – Horizon Update

TRST-R-1 Documentation errors 21
TRST-R-2 Collection may revert due to external conditions 21
TRST-R-3 Reusing of legacy disputes could overwrite storage 21
TRST-R-4 Avoid CEI violations in RecurringCollector 21
TRST-R-5 Improve validation of IndexingAgreement parameters 21
TRST-R-6 Allow for future non-zero service cuts of IndexingAgreement 21
TRST-R-7 Allow better control for authorized user of indexer 22
TRST-R-8 Dispute identifiers are not protected from collisions between different dispute types 22
TRST-R-9 The SubgraphService register() function is error-prone 22
TRST-R-10 Redundant check in PaymentsEscrow introduces risks 23

Trust Security The Graph – Horizon Update

Document properties

Versioning

Version Date Description

0.1 26/06/25 Client report

0.2 08/08/25 Mitigation review

0.3 13/08/25 Mitigation review #2

Contact

Trust

trust@trust-security.xyz

Trust Security The Graph – Horizon Update

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate.

Scope

Non-test files under:

• packages/horizon/contracts/**

• packages/subgraph-service/**

Repository details

• Repository URL: https://github.com/graphprotocol/contracts

• Commit hash: a7fb8758ffccad6a6f80dadcc68b12306ac0f615

• Mitigation review:

o b53ca01e3837392d80cc66050443dfd418e51eba

o 7695c9ec5f03ed265f6f78fc80e2a192d83db823

o 8048c4cbb45d3cb6c40444beb140e3882365eaeb

o 29dfdccadf74dce4b7a52ae658328ad026f59c9c

o 345cfc8d6331e19e4e16900bde3b9348624b123c

o 8b2e93a342fd1b5e22b3b314927849699e108c33

o aac9f8b7d9db82d854b73dd3c2c140e256ba13d4

o 836c0c2ec01551a4cc09cd5143f88eab62e8ea9b

o e3d2787b6d123b53ff87cebdc5e735403f5157a9

o 308d6e6d07e6dfcf499494f47d06f8f9580bf1a7

o 17b794e49c8144558210a04e93230761cfd7161f

o b492251395565ab97869b9e3e34b5840c1e6eb18

• 2nd Mitigation review:

o 0e469beeba0ec433e313be8c9129bcf99acdaac6

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Since its inception it has safeguarded over 30 clients

through private services and over 30 additional projects through bug bounty submissions.

https://github.com/graphprotocol/contracts

Trust Security The Graph – Horizon Update

About the Auditors

Trust has established a dominating presence in the smart contract security ecosystem since

2022. He is a resident on the Immunefi, Sherlock and C4 leaderboards and is now focused in

auditing and managing audit teams under Trust Security. When taking time off auditing & bug

hunting, he enjoys sharing knowledge and experience with aspiring auditors through X or the

Trust Security blog.

Disclaimer

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited

code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any additional

dependencies on external code have also been reviewed.

Trust Security The Graph – Horizon Update

Qualitative analysis

Metric Rating Comments
Code complexity

Good

Project kept code as
simple as possible,
reducing attack risks.

Documentation

Excellent

Project is very well

documented.

Best practices

Excellent

Project consistently
adheres to industry
standards.

Centralization risks

Good

Project does not introduce
significant unnecessary
centralization risks.

Trust Security The Graph – Horizon Update

Findings

High severity findings

TRST-H-1 Service providers would not be able to collect indexing fees when agreement

is cancelled by payer

• Category: Logical flaws

• Source: IndexingAgreement.sol

• Status: Fixed

Description

The RecurringCollector intends for the service provider to be able to collect payments until

the contract is cancelled by a payer.

require(

 agreement.state == AgreementState.Accepted || agreement.state

== AgreementState.CanceledByPayer,

RecurringCollectorAgreementIncorrectState(_params.agreementId,

agreement.state)

);

However, in IndexingAgreement collect() it is ensured the agreement state is Accepted.

function _isActive(AgreementWrapper memory wrapper) private view

returns (bool) {

 return

 wrapper.collectorAgreement.dataService == address(this)

&&

 wrapper.collectorAgreement.state ==

IRecurringCollector.AgreementState.Accepted &&

 wrapper.agreement.allocationId != address(0);

}

Service providers would not be able to collect the rewards for that time period.

Recommended mitigation

Accept an agreement in CanceledByPayer state in IndexingAgreement collect().

Team response

Fixed.

Mitigation review

The issue has been addressed by the IndexingAgreement having synced collection criteria with

the RecurringCollector.

Trust Security The Graph – Horizon Update

TRST-H-2 Anyone may collect the indexing fees of an indexer

• Category: Access control issues

• Source: SubgraphService.sol

• Status: Fixed

Description

When collecting fees the SubgraphService collect() is called with an agreementId which

reaches _collectIndexingFees() and then IndexingAgreement collect(). It ensures the matching

allocationId belongs to the serviceProvider from the agreement. However, it is missing

authentication that the indexer calling collect() is the owner of the allocationId. Thus, an

attacker could simply register as an indexer and call collect() on another indexer’s agreement

and receive their rewards. The payment destination is passed down from SubgraphService

collect() and is controlled by the attacker.

Recommended mitigation

Ensure the allocation indexer matches the caller of collect().

Team response

Issue has been addressed as suggested.

TRST-H-3 Attacker can avoid payment for services by crafting a malicious agreement

• Category: Logical flaws

• Source: RecurringCollector.sol

• Status: Fixed

Description

The RecurringCollector is susceptible to an escrow bypass exploit similar to issue TRST-H-1 of

the previous Horizon audit, previously affecting the TAPCollector.

The collect() function of RecurringCollector does not validate there is a trust relationship

between the service provider and the data service of the collected agreement, which is the

msg.sender. An agreement can be signed by an attacker with a victim service provider,

nominating a malicious data service. They could then call collect() and pass a data service cut

close to 100%. As a result, almost all escrow funds can be exfiltrated, while a legitimate

agreement for the (payer,provider,collector) tuple will not collectable.

Recommended mitigation

The issue can be solved similar to the TallyGraphCollector’s data service check:

{

 uint256 tokensAvailable =

_graphStaking().getProviderTokensAvailable(

 signedRAV.rav.serviceProvider,

 signedRAV.rav.dataService

);

 require(tokensAvailable > 0,

Trust Security The Graph – Horizon Update

GraphTallyCollectorUnauthorizedDataService(signedRAV.rav.dataServ

ice));

}

Team response

Fixed.

Mitigation review

Fixed as recommended.

Trust Security The Graph – Horizon Update

Medium severity findings

TRST-M-1 Wrong TYPEHASH string is used for agreement updates, limiting functionality

• Category: Typo errors

• Source: RecurringCollector.sol

• Status: Fixed

Description

The RecurringCollector uses the following structure for an agreement update:

struct RecurringCollectionAgreementUpdate {

 bytes16 agreementId;

 uint64 deadline;

 uint64 endsAt;

 uint256 maxInitialTokens;

 uint256 maxOngoingTokensPerSecond;

 uint32 minSecondsPerCollection;

 uint32 maxSecondsPerCollection;

 bytes metadata;

}

However, the structure EIP-712 TYPEHASH is defined below:

bytes32 public constant EIP712_RCAU_TYPEHASH =

 keccak256(

 "RecurringCollectionAgreementUpdate(bytes16

agreementId,uint256 deadline,uint256 endsAt,…

);

The type mismatch would cause parties producing an agreement update hash from the correct

structure to fail.

Recommended mitigation

Use the same types as the struct definition.

Team response

Fixed.

Mitigation review

Issue has been addressed for both RCAU and RCA typehashes.

TRST-M-2 Collection for an elapsed or canceled agreement could be wrong

• Category: Logical flaws

• Source: IndexingAgreement.sol

• Status: Fixed

Description

Trust Security The Graph – Horizon Update

The indexing agreement calculates the amount of tokens to collect in _tokensToCollect():

function _tokensToCollect(

 StorageManager storage _manager,

 bytes16 _agreementId,

 IRecurringCollector.AgreementData memory _agreement,

 uint256 _entities

) private view returns (uint256) {

 IndexingAgreementTermsV1 memory termsV1 =

_manager.termsV1[_agreementId];

 uint256 collectionSeconds = block.timestamp;

 collectionSeconds -= _agreement.lastCollectionAt > 0 ?

_agreement.lastCollectionAt : _agreement.acceptedAt;

 return collectionSeconds * (termsV1.tokensPerSecond +

termsV1.tokensPerEntityPerSecond * _entities);

}

Note that the end time is assumed to be block.timestamp, but the correct time could be earlier

if the agreement is canceled or elapsed, as calculated in the RecurringCollector:

uint256 collectionEnd = canceledOrElapsed ?

Math.min(canceledOrNow, _agreement.endsAt) : block.timestamp;

It is intended for the RecurringCollector to narrow the collection token total if needed, but

this would still result in a wrong calculation of the RecurringCollector amount is larger than

the IndexingAgreement amount. That could well be the case because the indexing-layer

tokensPerSecond could be lower than the collector-layer maxOngoingTokensPerSecond.

Recommended mitigation

Use the same duration calculation in IndexingAgreement.

Team response

Fixed.

Mitigation review

The core issue has been addressed, but during refactoring a minor issue surfaced.

/**

 * @notice Get collection info for an agreement

 * @param agreement The agreement data

 * @return isCollectable Whether the agreement is in a valid

state that allows collection attempts,

 * not that there are necessarily funds available to collect.

 * @return collectionSeconds The valid collection duration in

seconds (0 if not collectable)

 */

function getCollectionInfo(

 AgreementData memory agreement

) external view returns (bool isCollectable, uint256

collectionSeconds);

Trust Security The Graph – Horizon Update

The new getCollectionInfo() function returns isCollectable which is documented to mean the

state allows collection. However, in case the starting and ending collection time coincide, the

function will return true:

if (collectionEnd < collectionStart) {

 return (false, 0);

}

collectionSeconds = collectionEnd - collectionStart;

return (isCollectable, collectionSeconds);

While the RecurringCollector would in fact be blocking such a collection in collect():

require(

 collectionSeconds > 0,

 RecurringCollectorZeroCollectionSeconds(_params.agreementId,

block.timestamp, agreement.lastCollectionAt)

);

It is recommended to have the same logic in both locations to avoid integration issues.

Team response

Fixed.

Mitigation review

The locations in code are now aligned and a separate reason variable has been added for

context.

TRST-M-3 Updates could be submitted in unexpected order leading to deficiencies in

payment

• Category: Signature reuse attacks

• Source: RecurringCollector.sol

• Status: Fixed

Description

In the RecurringCollector, each agreement by design can be updated multiple times. However

the structure lacks a nonce, and the same update can be submitted again, for example the

sequence (Update-1, Update-2, Update-1) would be accepted. A payer would expect Update-

2 payment structure to be active, while in fact they would be paying under the Update-1 plan.

Recommended mitigation

Introduce a nonce to the Update structure.

Team response

Fixed.

Mitigation review

Trust Security The Graph – Horizon Update

Fixed as recommended.

Trust Security The Graph – Horizon Update

Low severity findings

TRST-L-1 If voteTimeLimit is set to a large value, votes would not be able to be passed

• Category: Underflow issues

• Source: SubgraphAvailabilityManager.sol

• Status: Acknowledged

Description

In checkVotes(), the starting timestamp from which a vote can be considered valid is calculated

below:

// timeframe for a vote to be valid

uint256 voteTimeValidity = block.timestamp - voteTimeLimit;

In case voteTimeLimit is configured to be very large (greater than block.timestamp), the line

above will underflow and it will not be possible to pass a vote. The expected behavior for a

large limit is to count a vote from any timestamp.

Recommended mitigation

In case the limit is larger than the current timestamp, set voteTimeValidity to zero.

Team response

Acknowledged, will address these after the initial Horizon deployment. Will at least

document that voteTimeLimit should not be set to such high value.

TRST-L-2 The indexer may not be able to collect fees if they are not programmed to

release the allocations

• Category: Out-of-gas issues

• Source: SubgraphService.sol

• Status: Acknowledged

Description

In collectQueryFees(), _releaseStake() is called to release matured stakes. This could lead to

an expensive loop which reverts due to out of gas. For that reason, a safety hatch was

designed where releaseStake() of the DataServiceFees parent contract could be called with a

controlled iteration count. However, this can only be called by the indexer. That breaks the

pattern where indexer functions on the Subgraph can be called by an authorized party. Note

that in HorizonStaking, there is a similar safety hatch in deprovision(), which is callable by any

authorized user. In the worst case, the indexer is a smart contract which does not have a

programmed call to releaseStake(), and thus cannot clear the funds.

Recommended mitigation

In the SubgraphService wrap the releaseStake() function in a way that allows an authorized

account to call it.

Trust Security The Graph – Horizon Update

Team response

Acknowledged, will address these after the initial Horizon deployment

TRST-L-3 Attacker can block new agreements from being created

• Category: Frontrunning attacks

• Source: IndexingAgreement.sol, RecurringCollector.sol

• Status: Fixed

Description

Agreements are accepted through IndexingAgreement.accept(), which passes an

agreementID that has to be unused. An attacker observing the mempool or otherwise capable

of predicting an agreementID pattern is able to preemptively register placeholder agreements

between two attacker entities. At this point, the honest accept() call would fail. The issue also

exists at the RecurringCollector layer and may be abused in other data services.

Recommended mitigation

Do not allow arbitrary agreementIDs, instead generate them using strong identifiers for the

payer, data service, provider, and nonces of parties.

Team response

The issue has been addressed as suggested.

TRST-L-4 A disputed transaction may not be fully identifiable by the given parameters

• Category: Logical flaws

• Source: DisputeManager.sol

• Status: Acknowledged

Description

In the DisputeManager a dispute with a poi uses block.number as an identifier for the

disputeID generation. The intention is to determine a unique instance which can be disputed,

however at the same block the same poi could be submitted multiple times. The intention is

to identify a unique slashable transaction, so another identifier should be used.

Recommended mitigation

Add the hash of the offending transaction, or the transaction index in the encompassing block.

Team response

WONT FIX - Reasoning :

- For Indexing Payments, only the first of those POIs will have collected funds, so we

can safely assume that’sthe one being disputed .

- Does this issue affect other disputes as well?

Mitigation Review

Trust Security The Graph – Horizon Update

For legacy disputes, those are trusted and select an allocation ID, so there is no case for

confusion. For attestation-based disputes, a request-response CID pair should be specific

enough to resolve the response in question, but this type involves a more elaborate off-chain

process which is out of scope for the smart contract review.

TRST-L-5 The RecurringCollector could narrow collection value by more than intended

• Category: Slippage issues

• Source: RecurringCollector.sol

• Status: Fixed

Description

The collection mechanism is designed so that an IndexingAgreement calculates the indexing

fees, which are passed to the RecurringCollector. The Collector would narrow down the fees

if they exceed the maximum allowable at the collector level. Note that regardless of the

narrowing, the last collected timestamp is updated to the current time, and any difference

between the expected and actual collected amount is forgotten in the contract state. While

this may be intended in some cases, in others the difference, which depends on external

factors like elapsed time until execution, is greater than expected. In essence there is

unlimited slippage between the two contracts responsible for collection.

In other agreements integrating with RecurringCollector this could have more significant

impact.

Recommended mitigation

A slippage parameter could be provided by the user. The RecurringCollector could check the

difference does not exceed this parameter or it would revert the transaction.

Team response

Fixed.

Mitigation review

The issue has been addressed as suggested.

TRST-L-6 The Agreement metadata version is not checked properly

• Category: Typo issues

• Source: IndexingAgreement.sol

• Status: Fixed

Description

In update(), the wrapper agreement version is set to the passed metadata version.

wrapper.agreement.version = metadata.version;

The line above should have been a validation that the values are the same. Setting the

wrapper value doesn’t achieve anything as it’s a memory variable.

Trust Security The Graph – Horizon Update

Recommended mitigation

Change the line above to a require statement.

Team response

Fixed.

Mitigation review

Issue has been addressed as suggested.

TRST-L-7 The indexer can time update() and collect() calls to change historic payments

• Category: Time sensitivity issues

• Source: RecurringCollector.sol

• Status: Acknowledged

Description

An agreement represents a commitment of payer to pay fees until the endsAt timestamp. At

regular intervals fees are collected through collect(), while update() can be used to update

endsAt. There are several race-conditions between update() and collect(). Before endsAt:

- If update() is called before collect(), the duration between the previous collection time

and the current block.timestamp is paid with the new pricing.

- If collect() is called before update(), that same duration is paid with the old pricing.

If an agreement is updated after endsAt:

- If update() is called before collect(), the duration between endsAt and the current

block.timestamp is paid with the new pricing.

- If collect() is called before update(), the same duration is paid with the old pricing.

The indexer can therefore choose to maximize between the options above, while the payer

has no control. However, the opportunity for gain is limited to the last collection period, as if

the maximum duration is crossed no payment can be collected at all.

Recommended mitigation

The update() function could make the last collected time the current timestamp. Then at no

point is pricing ambiguous, and the indexer cannot gain by ordering the transactions.

Team response

The behavior is documented as expected.

TRST-L-8 RecurringCollector agreements cannot be revoked leading to functionality

limitations

• Category: Logical flaws

• Source: RecurringAgreement.sol

• Status: Acknowledged

Trust Security The Graph – Horizon Update

Description

Once a RecurringCollector agreement is signed, it cannot be revoked, and the provider is the

one that submits it. Therefore, a payer would have to wait until the deadline to sign another

agreement in case it is withheld by the provider, or risk paying for multiple indexing

agreements at the same time.

Recommended mitigation

Consider adding a nonce to the RCA structure and make it incrementable by the payer, or to

introduce custom revoke functionality.

Team response

WONT FIX - Reasoning :

• Implementation would add complexity

• Existing mechanisms (deadlines, cancellation) provides sufficient mitigation

TRST-L-9 An agreement may not be cancelled when the matching allocation is closed

• Category: Logical flaws

• Source: SubgraphService.sol

• Status: Fixed

Description

In the SubgraphService, any time an allocation is closed, the code calls _onCloseAllocation()

to cancel an agreement relating to the closed allocation. However, in case

_collectIndexingRewards() is called and presentPOI() closes an allocation due to

_isOverAllocated() check, it won’t cancel the matching agreement.

Recommended mitigation

Add the _onCloseAllocation() call in this case as well. It is not possible to directly call it from

the AllocationHandler library, so it may need to be checked explicitly in SubgraphService after

presentPOI() completes.

Team response

Fixed.

Mitigation review

Issue has been addressed as suggested.

TRST-L-10 Rewards will be distributed for zero-epoch allocations

• Category: Logical flaws

• Source: HorizonStakingExtension.sol

• Status: Acknowledged

Description

Trust Security The Graph – Horizon Update

In closeAllocation() of HorizonStakingExtension, it is now allowed to close a zero-epoch

allocation. However, there is no limitation to reward distribution in this scenario:

// Process non-zero-allocation rewards tracking

if (alloc.tokens > 0) {

 // Distribute rewards if proof of indexing was presented by

the indexer or operator

 if (isIndexerOrOperator && _poi != 0) {

 _distributeRewards(_allocationID, alloc.indexer);

 } else {

A bot can get rewards since last collection without waiting a complete epoch, by immediately

withdrawing their allocation after reward accrual.

The impact is limited as during the Horizon period new legacy allocations cannot be opened.

Recommended mitigation

In the case epochs == 0, skip reward distribution.

Team response

Acknowledged, will address these after the initial Horizon deployment.

Trust Security The Graph – Horizon Update

Additional recommendations

TRST-R-1 Documentation errors

- RewardsManager getRewards() – Should add documentation of rewardIssuer.

- IndexingAgreementDecoder decodeIndexingAgreementTermsV1() – wrong revert

string.

- RecurringCollector accept()/update()/cancel() – mentions indexing agreement but

this relates to a generic RCA agreement.

TRST-R-2 Collection may revert due to external conditions

In GraphPayments collect(), if receiverDestination is zero, it will attempt staking the rewards

using stakeTo(). However, if HorizonStaking is paused, it would cause the collection to revert.

Consider either documenting the risk, or adding safe handling in this scenario.

TRST-R-3 Reusing of legacy disputes could overwrite storage

In legacy disputes, a second dispute of the same legacy allocationId would result in the same

disputeId. It is recommended to ensure those are unique to avoid overwriting values of

previous slashes. Note that the function requires high permissions.

TRST-R-4 Avoid CEI violations in RecurringCollector

In RecurringCollector _collect(), the effect of setting lastCollectionAt to the current time is

done after various interactions in PaymentEscrow collect(). If the contract could be

reentered, it would collect the same time period multiple times. Consider setting it before

the collect() call.

TRST-R-5 Improve validation of IndexingAgreement parameters

The IndexingAgreement configuration is handled both in IndexingAgreement and the

RecurringCollector. The contract could introduce sanity checks to make sure the

tokensPerSecond, tokensPerEntityPerSecond values are in line with the

maxOngoingTokensPerSecond value of RecurringCollector.

TRST-R-6 Allow for future non-zero service cuts of IndexingAgreement

Trust Security The Graph – Horizon Update

The collect() function in IndexingAgreement calls RecurringCollector collect() passing a fixed

dataServiceCut of 0. It may be useful to allow this value to be configured by Governance to

avoid redeployment and user intervention of provisioning a new data service in case that is

desired in the future.

TRST-R-7 Allow better control for authorized user of indexer

Most functions in SubgraphService allow an authorized user of the Indexer to perform various

operations on its behalf. However, the setPaymentsDestination() function is used by the

indexer and operates on msg.sender. Consider refactoring it to allow an authorized user.

TRST-R-8 Dispute identifiers are not protected from collisions between different

dispute types

Each dispute creation function constructs an identifier using different parameters:

bytes32 disputeId = keccak256(abi.encodePacked(allocationId,

"legacy"));

bytes32 disputeId = keccak256(

 abi.encodePacked(

 _attestation.requestCID,

 _attestation.responseCID,

 _attestation.subgraphDeploymentId,

 indexer,

 _fisherman

)

);

bytes32 disputeId = keccak256(abi.encodePacked(_allocationId,

_poi, _blockNumber));

// Create a disputeId

bytes32 disputeId = keccak256(

 abi.encodePacked("IndexingFeeDisputeWithAgreement",

_agreementId, _poi, _entities, _blockNumber)

);

It should be enforced via construction that the preimages from different methods cannot

collide, for example by prefixing with a dispute type code.

TRST-R-9 The SubgraphService register() function is error-prone

Trust Security The Graph – Horizon Update

In SubgraphService, the register() operation sets the payment destination unless the

parameter is zero:

if (paymentsDestination_ != address(0)) {

 setPaymentsDestination(indexer, paymentsDestination);

}

Note that the previous value may be non-zero, and it is intended to now set it to zero (if the

previous value is non-zero and the new value is non-zero, it indeed changes the state). A zero

payment address is used to choose the staking option in GraphPayments. Consider either

documenting the intended behavior, or removing the condition above.

TRST-R-10 Redundant check in PaymentsEscrow introduces risks

In PaymentsEscrow, there is a pre/post balance check for the collect() call.

uint256 escrowBalanceBefore =

_graphToken().balanceOf(address(this));

_graphToken().approve(address(_graphPayments()), tokens);

_graphPayments().collect(paymentType, receiver, tokens,

dataService, dataServiceCut, receiverDestination);

// Verify that the escrow balance is consistent with the

collected tokens

uint256 escrowBalanceAfter =

_graphToken().balanceOf(address(this));

require(

 escrowBalanceBefore == tokens + escrowBalanceAfter,

 PaymentsEscrowInconsistentCollection(escrowBalanceBefore,

escrowBalanceAfter, tokens)

);

In case the GraphPayments.collect() call changes the GRT balance of PaymentsEscrow except

the exact token amount, it would cause the collect() call to revert. This could happen if the

Escrow is a registered receiver for some reason, or if somehow the contract receives a

donation. Consider removing the balance check as it is not necessary, the GraphPayments

contract is trusted.

		2025-08-13T12:49:39+0300
	Trust

