You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Summary:
att
Also rerun the benchmarks/eval for llama2/llama3 to get most recent perf/acc data
Test Plan:
torchao/_models/llama/generate.py
torchao/_models/llama/eval.py
Reviewers:
Subscribers:
Tasks:
Tags:
parser.add_argument('--kv_cache_quantization', action='store_true', help='Whether to quantize the KV cache')
445
456
parser.add_argument('--cache_size', type=int, default=None, help='Force size of cache to be a certain number of tokens, if not set, will use max_new_tokens+prompt_size')
446
457
parser.add_argument('--linear_causal_mask', action='store_true', help='Whether to use the memory efficient, but slightly less fast, linear causal mask (important for long context lengths)')
note: Int8 dynamic quantization works best on compute bound models like [SAM](https://github.com/pytorch-labs/segment-anything-fast) whereas Llama with batchsize=1 tends to be memory bound, thus the rather low performance.
0 commit comments