3939__all__  =  ["TP" , "Latent" , "LatentKron" , "Marginal" , "MarginalApprox" , "MarginalKron" ]
4040
4141
42- _noise_deprecation_warning  =  (
43-     "The 'noise' parameter has been been changed to 'sigma' " 
44-     "in order to standardize the GP API and will be " 
45-     "deprecated in future releases." 
46- )
47- 
48- 
49- def  _handle_sigma_noise_parameters (sigma , noise ):
50-     """Help transition of 'noise' parameter to be named 'sigma'.""" 
51-     if  (sigma  is  None  and  noise  is  None ) or  (sigma  is  not None  and  noise  is  not None ):
52-         raise  ValueError ("'sigma' argument must be specified." )
53- 
54-     if  sigma  is  None :
55-         warnings .warn (_noise_deprecation_warning , FutureWarning )
56-         return  noise 
57- 
58-     return  sigma 
59- 
60- 
6142class  Base :
6243    """Base class.""" 
6344
@@ -477,8 +458,7 @@ def marginal_likelihood(
477458        name ,
478459        X ,
479460        y ,
480-         sigma = None ,
481-         noise = None ,
461+         sigma ,
482462        jitter = JITTER_DEFAULT ,
483463        is_observed = True ,
484464        ** kwargs ,
@@ -505,8 +485,6 @@ def marginal_likelihood(
505485        sigma : float, Variable, or Covariance, default ~pymc.gp.cov.WhiteNoise 
506486            Standard deviation of the Gaussian noise.  Can also be a Covariance for 
507487            non-white noise. 
508-         noise : float, Variable, or Covariance, optional 
509-             Deprecated. Previous parameterization of `sigma`. 
510488        jitter : float, default 1e-6 
511489            A small correction added to the diagonal of positive semi-definite 
512490            covariance matrices to ensure numerical stability. 
@@ -516,8 +494,6 @@ def marginal_likelihood(
516494            Extra keyword arguments that are passed to :class:`~pymc.MvNormal` distribution 
517495            constructor. 
518496        """ 
519-         sigma  =  _handle_sigma_noise_parameters (sigma = sigma , noise = noise )
520- 
521497        noise_func  =  sigma  if  isinstance (sigma , BaseCovariance ) else  pm .gp .cov .WhiteNoise (sigma )
522498        mu , cov  =  self ._build_marginal_likelihood (X = X , noise_func = noise_func , jitter = jitter )
523499        self .X  =  X 
@@ -544,10 +520,6 @@ def _get_given_vals(self, given):
544520            cov_total  =  self .cov_func 
545521            mean_total  =  self .mean_func 
546522
547-         if  "noise"  in  given :
548-             warnings .warn (_noise_deprecation_warning , FutureWarning )
549-             given ["sigma" ] =  given ["noise" ]
550- 
551523        if  all (val  in  given  for  val  in  ["X" , "y" , "sigma" ]):
552524            X , y , sigma  =  given ["X" ], given ["y" ], given ["sigma" ]
553525            noise_func  =  sigma  if  isinstance (sigma , BaseCovariance ) else  pm .gp .cov .WhiteNoise (sigma )
@@ -804,9 +776,7 @@ def _build_marginal_likelihood_loglik(self, y, X, Xu, sigma, jitter):
804776        quadratic  =  0.5  *  (pt .dot (r , r_l ) -  pt .dot (c , c ))
805777        return  - 1.0  *  (constant  +  logdet  +  quadratic  +  trace )
806778
807-     def  marginal_likelihood (
808-         self , name , X , Xu , y , sigma = None , noise = None , jitter = JITTER_DEFAULT , ** kwargs 
809-     ):
779+     def  marginal_likelihood (self , name , X , Xu , y , sigma , jitter = JITTER_DEFAULT , ** kwargs ):
810780        R""" 
811781        Return the approximate marginal likelihood distribution. 
812782
@@ -827,8 +797,6 @@ def marginal_likelihood(
827797            noise.  Must have shape `(n, )`. 
828798        sigma : float, Variable 
829799            Standard deviation of the Gaussian noise. 
830-         noise : float, Variable, optional 
831-             Previous parameterization of `sigma`. 
832800        jitter : float, default 1e-6 
833801            A small correction added to the diagonal of positive semi-definite 
834802            covariance matrices to ensure numerical stability. 
@@ -840,7 +808,7 @@ def marginal_likelihood(
840808        self .Xu  =  Xu 
841809        self .y  =  y 
842810
843-         self .sigma  =  _handle_sigma_noise_parameters ( sigma = sigma ,  noise = noise ) 
811+         self .sigma  =  sigma 
844812
845813        approx_loglik  =  self ._build_marginal_likelihood_loglik (
846814            y = self .y , X = self .X , Xu = self .Xu , sigma = self .sigma , jitter = jitter 
0 commit comments