|
| 1 | +// Copyright (C) 2018-2025 Intel Corporation |
| 2 | +// SPDX-License-Identifier: Apache-2.0 |
| 3 | +// |
| 4 | + |
| 5 | +#include <string> |
| 6 | +#include <sstream> |
| 7 | +#include <vector> |
| 8 | + |
| 9 | +#include "shared_test_classes/base/ov_behavior_test_utils.hpp" |
| 10 | +#include <common_test_utils/ov_tensor_utils.hpp> |
| 11 | +#include "openvino/pass/manager.hpp" |
| 12 | +#include "openvino/pass/serialize.hpp" |
| 13 | +#include "openvino/opsets/opset6.hpp" |
| 14 | +namespace ov { |
| 15 | +namespace test { |
| 16 | +namespace behavior { |
| 17 | + |
| 18 | +using InferRequestElementTypeParams = std::tuple< |
| 19 | + std::string, // Device name |
| 20 | + ov::AnyMap // Config |
| 21 | +>; |
| 22 | + |
| 23 | +class InferRequestElementTypeTests : public testing::WithParamInterface<InferRequestElementTypeParams>, |
| 24 | + public OVInferRequestTestBase { |
| 25 | + |
| 26 | +public: |
| 27 | + static std::string getTestCaseName(testing::TestParamInfo<InferRequestElementTypeParams> obj) { |
| 28 | + std::string target_device; |
| 29 | + ov::AnyMap configuration; |
| 30 | + std::tie(target_device, configuration) = obj.param; |
| 31 | + std::replace(target_device.begin(), target_device.end(), ':', '.'); |
| 32 | + std::ostringstream result; |
| 33 | + result << "targetDevice=" << target_device << "_"; |
| 34 | + if (!configuration.empty()) { |
| 35 | + for (auto& configItem : configuration) { |
| 36 | + result << "configItem=" << configItem.first << "_"; |
| 37 | + configItem.second.print(result); |
| 38 | + result << "_"; |
| 39 | + } |
| 40 | + } |
| 41 | + return result.str(); |
| 42 | + } |
| 43 | + |
| 44 | + void SetUp() { |
| 45 | + // Skip test according to plugin specific disabledTestPatterns() (if any) |
| 46 | + SKIP_IF_CURRENT_TEST_IS_DISABLED() |
| 47 | + |
| 48 | + std::tie(target_device, configuration) = this->GetParam(); |
| 49 | + APIBaseTest::SetUp(); |
| 50 | + } |
| 51 | + |
| 52 | +protected: |
| 53 | + bool compareTensorOutputs(const ov::Tensor& dynamicInferenceOutput, const ov::Tensor& undefinedInferenceOutput); |
| 54 | + |
| 55 | + std::shared_ptr<ov::Core> ie = utils::PluginCache::get().core(); |
| 56 | + ov::AnyMap configuration; |
| 57 | +}; |
| 58 | + |
| 59 | + |
| 60 | +bool InferRequestElementTypeTests::compareTensorOutputs(const ov::Tensor& dynamicInferenceOutput, const ov::Tensor& undefinedInferenceOutput) { |
| 61 | + const auto dynamicShape = dynamicInferenceOutput.get_shape(); |
| 62 | + const auto undefinedShape = undefinedInferenceOutput.get_shape(); |
| 63 | + |
| 64 | + // compare two models' element types |
| 65 | + if (dynamicInferenceOutput.get_element_type() != undefinedInferenceOutput.get_element_type()) { |
| 66 | + return false; |
| 67 | + } |
| 68 | + |
| 69 | + // compare two models' shapes |
| 70 | + if (dynamicShape.size() != undefinedShape.size()) { |
| 71 | + return false; |
| 72 | + } |
| 73 | + |
| 74 | + if (!std::equal(dynamicShape.cbegin(), dynamicShape.cend(), undefinedShape.cbegin())) { |
| 75 | + return false; |
| 76 | + } |
| 77 | + // compare two models' data |
| 78 | + for (size_t i = 0; i < undefinedInferenceOutput.get_size(); i++) { |
| 79 | + if (fabs(dynamicInferenceOutput.data<float>()[i] - undefinedInferenceOutput.data<float>()[i]) > |
| 80 | + std::numeric_limits<float>::epsilon()) |
| 81 | + return false; |
| 82 | + } |
| 83 | + return true; |
| 84 | +} |
| 85 | + |
| 86 | +// Test whether the serialization and inference results of the dynamic type model and the undefined type model are the same |
| 87 | +TEST_P(InferRequestElementTypeTests, CompareDynamicAndUndefinedTypeNetwork) { |
| 88 | + // Skip test according to plugin specific disabledTestPatterns() (if any) |
| 89 | + SKIP_IF_CURRENT_TEST_IS_DISABLED() |
| 90 | + |
| 91 | + // Customize a model with a dynamic type |
| 92 | + std::string dynamicTypeModelXmlString = R"V0G0N(<?xml version="1.0"?> |
| 93 | +<net name="custom_model" version="11"> |
| 94 | + <layers> |
| 95 | + <layer id="0" name="Parameter_1" type="Parameter" version="opset1"> |
| 96 | + <data shape="1,1,128" element_type="f32" /> |
| 97 | + <output> |
| 98 | + <port id="0" precision="FP32" names="Parameter_1"> |
| 99 | + <dim>1</dim> |
| 100 | + <dim>1</dim> |
| 101 | + <dim>128</dim> |
| 102 | + </port> |
| 103 | + </output> |
| 104 | + </layer> |
| 105 | + <layer id="1" name="Relu_2" type="ReLU" version="opset1"> |
| 106 | + <input> |
| 107 | + <port id="0" precision="FP32"> |
| 108 | + <dim>1</dim> |
| 109 | + <dim>1</dim> |
| 110 | + <dim>128</dim> |
| 111 | + </port> |
| 112 | + </input> |
| 113 | + <output> |
| 114 | + <port id="1" precision="FP32"> |
| 115 | + <dim>1</dim> |
| 116 | + <dim>1</dim> |
| 117 | + <dim>128</dim> |
| 118 | + </port> |
| 119 | + </output> |
| 120 | + </layer> |
| 121 | + <layer id="2" name="ReadValue_3" type="ReadValue" version="opset6"> |
| 122 | + <data variable_id="my_var" variable_type="dynamic" variable_shape="..." /> |
| 123 | + <input> |
| 124 | + <port id="0" precision="FP32"> |
| 125 | + <dim>1</dim> |
| 126 | + <dim>1</dim> |
| 127 | + <dim>128</dim> |
| 128 | + </port> |
| 129 | + </input> |
| 130 | + <output> |
| 131 | + <port id="1" precision="FP32"> |
| 132 | + <dim>1</dim> |
| 133 | + <dim>1</dim> |
| 134 | + <dim>128</dim> |
| 135 | + </port> |
| 136 | + </output> |
| 137 | + </layer> |
| 138 | + <layer id="3" name="Assign_4" type="Assign" version="opset6"> |
| 139 | + <data variable_id="my_var" /> |
| 140 | + <input> |
| 141 | + <port id="0" precision="FP32"> |
| 142 | + <dim>1</dim> |
| 143 | + <dim>1</dim> |
| 144 | + <dim>128</dim> |
| 145 | + </port> |
| 146 | + </input> |
| 147 | + <output> |
| 148 | + <port id="1" precision="FP32"> |
| 149 | + <dim>1</dim> |
| 150 | + <dim>1</dim> |
| 151 | + <dim>128</dim> |
| 152 | + </port> |
| 153 | + </output> |
| 154 | + </layer> |
| 155 | + <layer id="4" name="Squeeze_5" type="Squeeze" version="opset1"> |
| 156 | + <input> |
| 157 | + <port id="0" precision="FP32"> |
| 158 | + <dim>1</dim> |
| 159 | + <dim>1</dim> |
| 160 | + <dim>128</dim> |
| 161 | + </port> |
| 162 | + </input> |
| 163 | + <output> |
| 164 | + <port id="1" precision="FP32" names="Output_5"> |
| 165 | + <dim>128</dim> |
| 166 | + </port> |
| 167 | + </output> |
| 168 | + </layer> |
| 169 | + <layer id="5" name="Result_6" type="Result" version="opset1"> |
| 170 | + <input> |
| 171 | + <port id="0" precision="FP32"> |
| 172 | + <dim>128</dim> |
| 173 | + </port> |
| 174 | + </input> |
| 175 | + </layer> |
| 176 | + </layers> |
| 177 | + <edges> |
| 178 | + <edge from-layer="0" from-port="0" to-layer="1" to-port="0" /> |
| 179 | + <edge from-layer="1" from-port="1" to-layer="2" to-port="0" /> |
| 180 | + <edge from-layer="2" from-port="1" to-layer="3" to-port="0" /> |
| 181 | + <edge from-layer="3" from-port="1" to-layer="4" to-port="0" /> |
| 182 | + <edge from-layer="4" from-port="1" to-layer="5" to-port="0" /> |
| 183 | + </edges> |
| 184 | + <rt_info /> |
| 185 | +</net> |
| 186 | +)V0G0N"; |
| 187 | + |
| 188 | + // Customize a model with a undefined type |
| 189 | + std::string undefinedTypeModelXmlString = R"V0G0N(<?xml version="1.0"?> |
| 190 | +<net name="custom_model" version="11"> |
| 191 | + <layers> |
| 192 | + <layer id="0" name="Parameter_1" type="Parameter" version="opset1"> |
| 193 | + <data shape="1,1,128" element_type="f32" /> |
| 194 | + <output> |
| 195 | + <port id="0" precision="FP32" names="Parameter_1"> |
| 196 | + <dim>1</dim> |
| 197 | + <dim>1</dim> |
| 198 | + <dim>128</dim> |
| 199 | + </port> |
| 200 | + </output> |
| 201 | + </layer> |
| 202 | + <layer id="1" name="Relu_2" type="ReLU" version="opset1"> |
| 203 | + <input> |
| 204 | + <port id="0" precision="FP32"> |
| 205 | + <dim>1</dim> |
| 206 | + <dim>1</dim> |
| 207 | + <dim>128</dim> |
| 208 | + </port> |
| 209 | + </input> |
| 210 | + <output> |
| 211 | + <port id="1" precision="FP32"> |
| 212 | + <dim>1</dim> |
| 213 | + <dim>1</dim> |
| 214 | + <dim>128</dim> |
| 215 | + </port> |
| 216 | + </output> |
| 217 | + </layer> |
| 218 | + <layer id="2" name="ReadValue_3" type="ReadValue" version="opset6"> |
| 219 | + <data variable_id="my_var" variable_type="undefined" variable_shape="..." /> |
| 220 | + <input> |
| 221 | + <port id="0" precision="FP32"> |
| 222 | + <dim>1</dim> |
| 223 | + <dim>1</dim> |
| 224 | + <dim>128</dim> |
| 225 | + </port> |
| 226 | + </input> |
| 227 | + <output> |
| 228 | + <port id="1" precision="FP32"> |
| 229 | + <dim>1</dim> |
| 230 | + <dim>1</dim> |
| 231 | + <dim>128</dim> |
| 232 | + </port> |
| 233 | + </output> |
| 234 | + </layer> |
| 235 | + <layer id="3" name="Assign_4" type="Assign" version="opset6"> |
| 236 | + <data variable_id="my_var" /> |
| 237 | + <input> |
| 238 | + <port id="0" precision="FP32"> |
| 239 | + <dim>1</dim> |
| 240 | + <dim>1</dim> |
| 241 | + <dim>128</dim> |
| 242 | + </port> |
| 243 | + </input> |
| 244 | + <output> |
| 245 | + <port id="1" precision="FP32"> |
| 246 | + <dim>1</dim> |
| 247 | + <dim>1</dim> |
| 248 | + <dim>128</dim> |
| 249 | + </port> |
| 250 | + </output> |
| 251 | + </layer> |
| 252 | + <layer id="4" name="Squeeze_5" type="Squeeze" version="opset1"> |
| 253 | + <input> |
| 254 | + <port id="0" precision="FP32"> |
| 255 | + <dim>1</dim> |
| 256 | + <dim>1</dim> |
| 257 | + <dim>128</dim> |
| 258 | + </port> |
| 259 | + </input> |
| 260 | + <output> |
| 261 | + <port id="1" precision="FP32" names="Output_5"> |
| 262 | + <dim>128</dim> |
| 263 | + </port> |
| 264 | + </output> |
| 265 | + </layer> |
| 266 | + <layer id="5" name="Result_6" type="Result" version="opset1"> |
| 267 | + <input> |
| 268 | + <port id="0" precision="FP32"> |
| 269 | + <dim>128</dim> |
| 270 | + </port> |
| 271 | + </input> |
| 272 | + </layer> |
| 273 | + </layers> |
| 274 | + <edges> |
| 275 | + <edge from-layer="0" from-port="0" to-layer="1" to-port="0" /> |
| 276 | + <edge from-layer="1" from-port="1" to-layer="2" to-port="0" /> |
| 277 | + <edge from-layer="2" from-port="1" to-layer="3" to-port="0" /> |
| 278 | + <edge from-layer="3" from-port="1" to-layer="4" to-port="0" /> |
| 279 | + <edge from-layer="4" from-port="1" to-layer="5" to-port="0" /> |
| 280 | + </edges> |
| 281 | + <rt_info /> |
| 282 | +</net> |
| 283 | +)V0G0N"; |
| 284 | + |
| 285 | + std::stringstream dynamicTypeModelXmlStream, undefinedTypeModelXmlStream, dynamicTypeModelBinStream, undefinedTypeModelBinStream; |
| 286 | + |
| 287 | + // Test whether the serialization results of the two models are the same |
| 288 | + auto dynamicTypeModel = ie->read_model(dynamicTypeModelXmlString, ov::Tensor()); |
| 289 | + auto undefinedTypeModel = ie->read_model(undefinedTypeModelXmlString, ov::Tensor()); |
| 290 | + |
| 291 | + // compile the serialized models |
| 292 | + ov::pass::Serialize(dynamicTypeModelXmlStream, dynamicTypeModelBinStream).run_on_model(dynamicTypeModel); |
| 293 | + ov::pass::Serialize(undefinedTypeModelXmlStream, undefinedTypeModelBinStream).run_on_model(undefinedTypeModel); |
| 294 | + |
| 295 | + ASSERT_TRUE(dynamicTypeModelXmlStream.str() == undefinedTypeModelXmlStream.str()) |
| 296 | + << "Serialized XML files are different: dynamic type vs undefined type"; |
| 297 | + |
| 298 | + // Test whether the inference results of the two models are the same |
| 299 | + // set input and output names |
| 300 | + const std::string inputName = "Parameter_1"; |
| 301 | + const std::string outputName = "Output_5"; |
| 302 | + |
| 303 | + // create input tensor match the customized models |
| 304 | + ov::Shape shape = {1, 1, 128}; |
| 305 | + ov::Tensor inTensor = ov::test::utils::create_and_fill_tensor(ov::element::f32, shape, 100, 0); |
| 306 | + |
| 307 | + auto execNetDynamic = ie->compile_model(dynamicTypeModel, target_device, configuration); |
| 308 | + ov::InferRequest reqDynamic; |
| 309 | + OV_ASSERT_NO_THROW(reqDynamic = execNetDynamic.create_infer_request()); |
| 310 | + OV_ASSERT_NO_THROW(reqDynamic.set_tensor(inputName, inTensor)); |
| 311 | + OV_ASSERT_NO_THROW(reqDynamic.infer()); |
| 312 | + |
| 313 | + auto execNetUndefined = ie->compile_model(undefinedTypeModel, target_device, configuration); |
| 314 | + ov::InferRequest reqUndefined; |
| 315 | + OV_ASSERT_NO_THROW(reqUndefined = execNetUndefined.create_infer_request()); |
| 316 | + OV_ASSERT_NO_THROW(reqUndefined.set_tensor(inputName, inTensor)); |
| 317 | + OV_ASSERT_NO_THROW(reqUndefined.infer()); |
| 318 | + |
| 319 | + // compare the reference outputs between dynamic type model and undefined type model |
| 320 | + ASSERT_TRUE(compareTensorOutputs(reqDynamic.get_tensor(outputName), reqUndefined.get_tensor(outputName))) |
| 321 | + << "Inference results are different: dynamic type vs undefined type"; |
| 322 | +} |
| 323 | + |
| 324 | +} // namespace behavior |
| 325 | +} // namespace test |
| 326 | +} // namespace ov |
0 commit comments