|
4 | 4 | "cell_type": "markdown", |
5 | 5 | "metadata": {}, |
6 | 6 | "source": [ |
7 | | - "# Azure embeddings example\n", |
8 | | - "In this example we'll try to go over all operations for embeddings that can be done using the Azure endpoints. \\\n", |
9 | | - "This example focuses on finetuning but touches on the majority of operations that are also available using the API. This example is meant to be a quick way of showing simple operations and is not meant as a tutorial." |
10 | | - ] |
11 | | - }, |
12 | | - { |
13 | | - "cell_type": "code", |
14 | | - "execution_count": null, |
15 | | - "metadata": {}, |
16 | | - "outputs": [], |
17 | | - "source": [ |
18 | | - "import openai\n", |
19 | | - "from openai import cli" |
20 | | - ] |
21 | | - }, |
22 | | - { |
23 | | - "cell_type": "markdown", |
24 | | - "metadata": {}, |
25 | | - "source": [ |
26 | | - "## Setup\n", |
27 | | - "In the following section the endpoint and key need to be set up of the next sections to work. \\\n", |
28 | | - "Please go to https://portal.azure.com, find your resource and then under \"Resource Management\" -> \"Keys and Endpoints\" look for the \"Endpoint\" value and one of the Keys. They will act as api_base and api_key in the code below." |
29 | | - ] |
30 | | - }, |
31 | | - { |
32 | | - "cell_type": "code", |
33 | | - "execution_count": null, |
34 | | - "metadata": {}, |
35 | | - "outputs": [], |
36 | | - "source": [ |
37 | | - "openai.api_key = '' # Please add your api key here\n", |
38 | | - "openai.api_base = '' # Please add your endpoint here\n", |
39 | | - "\n", |
40 | | - "openai.api_type = 'azure'\n", |
41 | | - "openai.api_version = '2022-03-01-preview' # this may change in the future" |
42 | | - ] |
43 | | - }, |
44 | | - { |
45 | | - "cell_type": "markdown", |
46 | | - "metadata": {}, |
47 | | - "source": [ |
48 | | - "## Deployments\n", |
49 | | - "In this section we are going to create a deployment using the finetune model that we just adapted and then used the deployment to create a simple completion operation." |
50 | | - ] |
51 | | - }, |
52 | | - { |
53 | | - "cell_type": "markdown", |
54 | | - "metadata": {}, |
55 | | - "source": [ |
56 | | - "### Deployments: Create Manually\n", |
57 | | - "Let's create a deployment using the text-similarity-curie-001 engine. You can create a new deployment by going to your Resource in your portal under \"Resource Management\" -> \"Deployments\"." |
58 | | - ] |
59 | | - }, |
60 | | - { |
61 | | - "cell_type": "markdown", |
62 | | - "metadata": {}, |
63 | | - "source": [ |
64 | | - "### (Optional) Deployments: Create Programatically\n", |
65 | | - "We can also create a deployment using code:" |
66 | | - ] |
67 | | - }, |
68 | | - { |
69 | | - "cell_type": "code", |
70 | | - "execution_count": null, |
71 | | - "metadata": {}, |
72 | | - "outputs": [], |
73 | | - "source": [ |
74 | | - "model = \"text-similarity-curie-001\"\n", |
75 | | - "\n", |
76 | | - "# Now let's create the deployment\n", |
77 | | - "print(f'Creating a new deployment with model: {model}')\n", |
78 | | - "result = openai.Deployment.create(model=model, scale_settings={\"scale_type\":\"manual\", \"capacity\": 1})\n", |
79 | | - "deployment_id = result[\"id\"]" |
80 | | - ] |
81 | | - }, |
82 | | - { |
83 | | - "cell_type": "markdown", |
84 | | - "metadata": {}, |
85 | | - "source": [ |
86 | | - "### (Optional) Deployments: Retrieving\n", |
87 | | - "Now let's check the status of the newly created deployment" |
88 | | - ] |
89 | | - }, |
90 | | - { |
91 | | - "cell_type": "code", |
92 | | - "execution_count": null, |
93 | | - "metadata": {}, |
94 | | - "outputs": [], |
95 | | - "source": [ |
96 | | - "print(f'Checking for deployment status.')\n", |
97 | | - "resp = openai.Deployment.retrieve(id=deployment_id)\n", |
98 | | - "status = resp[\"status\"]\n", |
99 | | - "print(f'Deployment {deployment_id} is with status: {status}')" |
100 | | - ] |
101 | | - }, |
102 | | - { |
103 | | - "cell_type": "markdown", |
104 | | - "metadata": {}, |
105 | | - "source": [ |
106 | | - "### Deployments: Listing\n", |
107 | | - "Now because creating a new deployment takes a long time, let's look in the subscription for an already finished deployment that succeeded." |
108 | | - ] |
109 | | - }, |
110 | | - { |
111 | | - "cell_type": "code", |
112 | | - "execution_count": null, |
113 | | - "metadata": {}, |
114 | | - "outputs": [], |
115 | | - "source": [ |
116 | | - "print('While deployment running, selecting a completed one.')\n", |
117 | | - "deployment_id = None\n", |
118 | | - "result = openai.Deployment.list()\n", |
119 | | - "for deployment in result.data:\n", |
120 | | - " if deployment[\"status\"] == \"succeeded\":\n", |
121 | | - " deployment_id = deployment[\"id\"]\n", |
122 | | - " break\n", |
123 | | - "\n", |
124 | | - "if not deployment_id:\n", |
125 | | - " print('No deployment with status: succeeded found.')\n", |
126 | | - "else:\n", |
127 | | - " print(f'Found a successful deployment with id: {deployment_id}.')" |
128 | | - ] |
129 | | - }, |
130 | | - { |
131 | | - "cell_type": "markdown", |
132 | | - "metadata": {}, |
133 | | - "source": [ |
134 | | - "### Embeddings\n", |
135 | | - "Now let's send a sample embedding to the deployment." |
136 | | - ] |
137 | | - }, |
138 | | - { |
139 | | - "cell_type": "code", |
140 | | - "execution_count": null, |
141 | | - "metadata": {}, |
142 | | - "outputs": [], |
143 | | - "source": [ |
144 | | - "embeddings = openai.Embedding.create(deployment_id=deployment_id,\n", |
145 | | - " input=\"The food was delicious and the waiter...\")\n", |
146 | | - " \n", |
147 | | - "print(embeddings)" |
148 | | - ] |
149 | | - }, |
150 | | - { |
151 | | - "cell_type": "markdown", |
152 | | - "metadata": {}, |
153 | | - "source": [ |
154 | | - "### (Optional) Deployments: Delete\n", |
155 | | - "Finally let's delete the deployment" |
156 | | - ] |
157 | | - }, |
158 | | - { |
159 | | - "cell_type": "code", |
160 | | - "execution_count": null, |
161 | | - "metadata": {}, |
162 | | - "outputs": [], |
163 | | - "source": [ |
164 | | - "print(f'Deleting deployment: {deployment_id}')\n", |
165 | | - "openai.Deployment.delete(sid=deployment_id)" |
| 7 | + "This code example has moved. You can now find it in the [OpenAI Cookbook](https://github.com/openai/openai-cookbook) at [examples/azure/embeddings.ipynb](https://github.com/openai/openai-cookbook/tree/main/examples/azure/embeddings.ipynb)." |
166 | 8 | ] |
167 | 9 | } |
168 | 10 | ], |
169 | 11 | "metadata": { |
170 | | - "interpreter": { |
171 | | - "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" |
172 | | - }, |
173 | 12 | "kernelspec": { |
174 | | - "display_name": "Python 3.8.10 64-bit", |
| 13 | + "display_name": "Python 3.9.9 ('openai')", |
175 | 14 | "language": "python", |
176 | 15 | "name": "python3" |
177 | 16 | }, |
|
185 | 24 | "name": "python", |
186 | 25 | "nbconvert_exporter": "python", |
187 | 26 | "pygments_lexer": "ipython3", |
188 | | - "version": "3.8.10" |
| 27 | + "version": "3.9.9" |
189 | 28 | }, |
190 | | - "orig_nbformat": 4 |
| 29 | + "orig_nbformat": 4, |
| 30 | + "vscode": { |
| 31 | + "interpreter": { |
| 32 | + "hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97" |
| 33 | + } |
| 34 | + } |
191 | 35 | }, |
192 | 36 | "nbformat": 4, |
193 | 37 | "nbformat_minor": 2 |
|
0 commit comments