|
| 1 | +/* |
| 2 | +Heavy Light Decomposition: |
| 3 | +It partitions a tree into disjoint paths such that: |
| 4 | +1. Each path is a part of some leaf's path to root |
| 5 | +2. The number of paths from any vertex to the root is of O(lg(n)) |
| 6 | +Such a decomposition can be used to answer many types of queries about vertices |
| 7 | +or edges on a particular path. It is often used with some sort of binary tree |
| 8 | +to handle different operations on the paths, for example segment tree or |
| 9 | +fenwick tree. |
| 10 | +
|
| 11 | +Many members of this struct are made public, because they can either be |
| 12 | +supplied by the developer, or can be useful for other parts of the code. |
| 13 | +
|
| 14 | +The implementation assumes that the tree vertices are numbered from 1 to n |
| 15 | +and it is represented using (compressed) adjacency matrix. If this is not true, |
| 16 | +maybe `graph_enumeration.rs` can help. |
| 17 | +*/ |
| 18 | + |
| 19 | +type Adj = [Vec<usize>]; |
| 20 | + |
| 21 | +pub struct HeavyLightDecomposition { |
| 22 | + // Each vertex is assigned a number from 1 to n. For `v` and `u` such that |
| 23 | + // u is parent of v, and both are in path `p`, it is true that: |
| 24 | + // position[u] = position[v] - 1 |
| 25 | + pub position: Vec<usize>, |
| 26 | + |
| 27 | + // The first (closest to root) vertex of the path containing each vertex |
| 28 | + pub head: Vec<usize>, |
| 29 | + |
| 30 | + // The "heaviest" child of each vertex, its subtree is at least as big as |
| 31 | + // the other ones. If `v` is a leaf, big_child[v] = 0 |
| 32 | + pub big_child: Vec<usize>, |
| 33 | + |
| 34 | + // Used internally to fill `position` Vec |
| 35 | + current_position: usize, |
| 36 | +} |
| 37 | + |
| 38 | +impl HeavyLightDecomposition { |
| 39 | + pub fn new(mut num_vertices: usize) -> Self { |
| 40 | + num_vertices += 1; |
| 41 | + HeavyLightDecomposition { |
| 42 | + position: vec![0; num_vertices], |
| 43 | + head: vec![0; num_vertices], |
| 44 | + big_child: vec![0; num_vertices], |
| 45 | + current_position: 1, |
| 46 | + } |
| 47 | + } |
| 48 | + fn dfs(&mut self, v: usize, parent: usize, adj: &Adj) -> usize { |
| 49 | + let mut big_child = 0usize; |
| 50 | + let mut bc_size = 0usize; // big child size |
| 51 | + let mut subtree_size = 1usize; // size of this subtree |
| 52 | + for &u in adj[v].iter() { |
| 53 | + if u == parent { |
| 54 | + continue; |
| 55 | + } |
| 56 | + let u_size = self.dfs(u, v, adj); |
| 57 | + subtree_size += u_size; |
| 58 | + if u_size > bc_size { |
| 59 | + big_child = u; |
| 60 | + bc_size = u_size; |
| 61 | + } |
| 62 | + } |
| 63 | + self.big_child[v] = big_child; |
| 64 | + subtree_size |
| 65 | + } |
| 66 | + pub fn decompose(&mut self, root: usize, adj: &Adj) { |
| 67 | + self.current_position = 1; |
| 68 | + self.dfs(root, 0, adj); |
| 69 | + self.decompose_path(root, 0, root, adj); |
| 70 | + } |
| 71 | + fn decompose_path(&mut self, v: usize, parent: usize, head: usize, adj: &Adj) { |
| 72 | + self.head[v] = head; |
| 73 | + self.position[v] = self.current_position; |
| 74 | + self.current_position += 1; |
| 75 | + let bc = self.big_child[v]; |
| 76 | + if bc != 0 { |
| 77 | + // Continue this path |
| 78 | + self.decompose_path(bc, v, head, adj); |
| 79 | + } |
| 80 | + for &u in adj[v].iter() { |
| 81 | + if u == parent || u == bc { |
| 82 | + continue; |
| 83 | + } |
| 84 | + // Start a new path |
| 85 | + self.decompose_path(u, v, u, adj); |
| 86 | + } |
| 87 | + } |
| 88 | +} |
| 89 | + |
| 90 | +#[cfg(test)] |
| 91 | +mod tests { |
| 92 | + use super::*; |
| 93 | + |
| 94 | + struct LinearCongruenceGenerator { |
| 95 | + // modulus as 2 ^ 32 |
| 96 | + multiplier: u32, |
| 97 | + increment: u32, |
| 98 | + state: u32, |
| 99 | + } |
| 100 | + |
| 101 | + impl LinearCongruenceGenerator { |
| 102 | + fn new(multiplier: u32, increment: u32, state: u32) -> Self { |
| 103 | + Self { |
| 104 | + multiplier, |
| 105 | + increment, |
| 106 | + state, |
| 107 | + } |
| 108 | + } |
| 109 | + fn next(&mut self) -> u32 { |
| 110 | + self.state = |
| 111 | + (self.multiplier as u64 * self.state as u64 + self.increment as u64) as u32; |
| 112 | + self.state |
| 113 | + } |
| 114 | + } |
| 115 | + |
| 116 | + fn get_num_paths( |
| 117 | + hld: &HeavyLightDecomposition, |
| 118 | + mut v: usize, |
| 119 | + parent: &[usize], |
| 120 | + ) -> (usize, usize) { |
| 121 | + // Return height and number of paths |
| 122 | + let mut ans = 0usize; |
| 123 | + let mut height = 0usize; |
| 124 | + let mut prev_head = 0usize; |
| 125 | + loop { |
| 126 | + height += 1; |
| 127 | + let head = hld.head[v]; |
| 128 | + if head != prev_head { |
| 129 | + ans += 1; |
| 130 | + prev_head = head; |
| 131 | + } |
| 132 | + v = parent[v]; |
| 133 | + if v == 0 { |
| 134 | + break; |
| 135 | + } |
| 136 | + } |
| 137 | + (ans, height) |
| 138 | + } |
| 139 | + |
| 140 | + #[test] |
| 141 | + fn single_path() { |
| 142 | + let mut adj = vec![vec![], vec![2], vec![3], vec![4], vec![5], vec![6], vec![]]; |
| 143 | + let mut hld = HeavyLightDecomposition::new(6); |
| 144 | + hld.decompose(1, &adj); |
| 145 | + assert_eq!(hld.head, vec![0, 1, 1, 1, 1, 1, 1]); |
| 146 | + assert_eq!(hld.position, vec![0, 1, 2, 3, 4, 5, 6]); |
| 147 | + assert_eq!(hld.big_child, vec![0, 2, 3, 4, 5, 6, 0]); |
| 148 | + |
| 149 | + adj[3].push(2); |
| 150 | + adj[2].push(1); |
| 151 | + hld.decompose(3, &adj); |
| 152 | + assert_eq!(hld.head, vec![0, 2, 2, 3, 3, 3, 3]); |
| 153 | + assert_eq!(hld.position, vec![0, 6, 5, 1, 2, 3, 4]); |
| 154 | + assert_eq!(hld.big_child, vec![0, 0, 1, 4, 5, 6, 0]); |
| 155 | + } |
| 156 | + |
| 157 | + #[test] |
| 158 | + fn random_tree() { |
| 159 | + // Let it have 1e4 vertices. It should finish under 100ms even with |
| 160 | + // 1e5 vertices |
| 161 | + let n = 1e4 as usize; |
| 162 | + let threshold = 14; // 2 ^ 14 = 16384 > n |
| 163 | + let mut adj: Vec<Vec<usize>> = vec![vec![]; n + 1]; |
| 164 | + let mut parent: Vec<usize> = vec![0; n + 1]; |
| 165 | + let mut hld = HeavyLightDecomposition::new(n); |
| 166 | + let mut lcg = LinearCongruenceGenerator::new(1103515245, 12345, 314); |
| 167 | + parent[2] = 1; |
| 168 | + adj[1].push(2); |
| 169 | + for i in 3..=n { |
| 170 | + // randomly determine the parent of each vertex. |
| 171 | + // There will be modulus bias, but it isn't important |
| 172 | + let par_max = i - 1; |
| 173 | + let par_min = (10 * par_max + 1) / 11; |
| 174 | + // Bring par_min closer to par_max to increase expected tree height |
| 175 | + let par = (lcg.next() as usize % (par_max - par_min + 1)) + par_min; |
| 176 | + adj[par].push(i); |
| 177 | + parent[i] = par; |
| 178 | + } |
| 179 | + // let's get a few leaves |
| 180 | + let leaves: Vec<usize> = (1..=n) |
| 181 | + .rev() |
| 182 | + .filter(|&v| adj[v].is_empty()) |
| 183 | + .take(100) |
| 184 | + .collect(); |
| 185 | + hld.decompose(1, &adj); |
| 186 | + for l in leaves { |
| 187 | + let (p, _h) = get_num_paths(&hld, l, &parent); |
| 188 | + assert!(p <= threshold); |
| 189 | + } |
| 190 | + } |
| 191 | +} |
0 commit comments